Evaluate
\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}
Expand
\frac{k^{3}}{6}+k^{2}+\frac{11k}{6}+1
Share
Copied to clipboard
\left(\frac{1}{6}k+\frac{1}{6}\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply \frac{1}{6} by k+1.
\left(\frac{1}{6}kk+\frac{1}{6}k\times 2+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of \frac{1}{6}k+\frac{1}{6} by each term of k+2.
\left(\frac{1}{6}k^{2}+\frac{1}{6}k\times 2+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Multiply k and k to get k^{2}.
\left(\frac{1}{6}k^{2}+\frac{2}{6}k+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
\left(\frac{1}{6}k^{2}+\frac{1}{3}k+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Combine \frac{1}{3}k and \frac{1}{6}k to get \frac{1}{2}k.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{2}{6}\right)\left(k+3\right)
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{3}\right)\left(k+3\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{6}k^{2}k+\frac{1}{6}k^{2}\times 3+\frac{1}{2}kk+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Apply the distributive property by multiplying each term of \frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{3} by each term of k+3.
\frac{1}{6}k^{3}+\frac{1}{6}k^{2}\times 3+\frac{1}{2}kk+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{6}k^{3}+\frac{1}{6}k^{2}\times 3+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply k and k to get k^{2}.
\frac{1}{6}k^{3}+\frac{3}{6}k^{2}+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{6}k^{3}+\frac{1}{2}k^{2}+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{6}k^{3}+k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Combine \frac{1}{2}k^{2} and \frac{1}{2}k^{2} to get k^{2}.
\frac{1}{6}k^{3}+k^{2}+\frac{3}{2}k+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{1}{6}k^{3}+k^{2}+\frac{11}{6}k+\frac{1}{3}\times 3
Combine \frac{3}{2}k and \frac{1}{3}k to get \frac{11}{6}k.
\frac{1}{6}k^{3}+k^{2}+\frac{11}{6}k+1
Cancel out 3 and 3.
\left(\frac{1}{6}k+\frac{1}{6}\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply \frac{1}{6} by k+1.
\left(\frac{1}{6}kk+\frac{1}{6}k\times 2+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of \frac{1}{6}k+\frac{1}{6} by each term of k+2.
\left(\frac{1}{6}k^{2}+\frac{1}{6}k\times 2+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Multiply k and k to get k^{2}.
\left(\frac{1}{6}k^{2}+\frac{2}{6}k+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
\left(\frac{1}{6}k^{2}+\frac{1}{3}k+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Combine \frac{1}{3}k and \frac{1}{6}k to get \frac{1}{2}k.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{2}{6}\right)\left(k+3\right)
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{3}\right)\left(k+3\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{6}k^{2}k+\frac{1}{6}k^{2}\times 3+\frac{1}{2}kk+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Apply the distributive property by multiplying each term of \frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{3} by each term of k+3.
\frac{1}{6}k^{3}+\frac{1}{6}k^{2}\times 3+\frac{1}{2}kk+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{6}k^{3}+\frac{1}{6}k^{2}\times 3+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply k and k to get k^{2}.
\frac{1}{6}k^{3}+\frac{3}{6}k^{2}+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{6}k^{3}+\frac{1}{2}k^{2}+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{6}k^{3}+k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Combine \frac{1}{2}k^{2} and \frac{1}{2}k^{2} to get k^{2}.
\frac{1}{6}k^{3}+k^{2}+\frac{3}{2}k+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{1}{6}k^{3}+k^{2}+\frac{11}{6}k+\frac{1}{3}\times 3
Combine \frac{3}{2}k and \frac{1}{3}k to get \frac{11}{6}k.
\frac{1}{6}k^{3}+k^{2}+\frac{11}{6}k+1
Cancel out 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}