Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{6}k+\frac{1}{6}\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply \frac{1}{6} by k+1.
\left(\frac{1}{6}kk+\frac{1}{6}k\times 2+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of \frac{1}{6}k+\frac{1}{6} by each term of k+2.
\left(\frac{1}{6}k^{2}+\frac{1}{6}k\times 2+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Multiply k and k to get k^{2}.
\left(\frac{1}{6}k^{2}+\frac{2}{6}k+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
\left(\frac{1}{6}k^{2}+\frac{1}{3}k+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Combine \frac{1}{3}k and \frac{1}{6}k to get \frac{1}{2}k.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{2}{6}\right)\left(k+3\right)
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{3}\right)\left(k+3\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{6}k^{2}k+\frac{1}{6}k^{2}\times 3+\frac{1}{2}kk+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Apply the distributive property by multiplying each term of \frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{3} by each term of k+3.
\frac{1}{6}k^{3}+\frac{1}{6}k^{2}\times 3+\frac{1}{2}kk+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{6}k^{3}+\frac{1}{6}k^{2}\times 3+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply k and k to get k^{2}.
\frac{1}{6}k^{3}+\frac{3}{6}k^{2}+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{6}k^{3}+\frac{1}{2}k^{2}+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{6}k^{3}+k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Combine \frac{1}{2}k^{2} and \frac{1}{2}k^{2} to get k^{2}.
\frac{1}{6}k^{3}+k^{2}+\frac{3}{2}k+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{1}{6}k^{3}+k^{2}+\frac{11}{6}k+\frac{1}{3}\times 3
Combine \frac{3}{2}k and \frac{1}{3}k to get \frac{11}{6}k.
\frac{1}{6}k^{3}+k^{2}+\frac{11}{6}k+1
Cancel out 3 and 3.
\left(\frac{1}{6}k+\frac{1}{6}\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply \frac{1}{6} by k+1.
\left(\frac{1}{6}kk+\frac{1}{6}k\times 2+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of \frac{1}{6}k+\frac{1}{6} by each term of k+2.
\left(\frac{1}{6}k^{2}+\frac{1}{6}k\times 2+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Multiply k and k to get k^{2}.
\left(\frac{1}{6}k^{2}+\frac{2}{6}k+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
\left(\frac{1}{6}k^{2}+\frac{1}{3}k+\frac{1}{6}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{6}\times 2\right)\left(k+3\right)
Combine \frac{1}{3}k and \frac{1}{6}k to get \frac{1}{2}k.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{2}{6}\right)\left(k+3\right)
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
\left(\frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{3}\right)\left(k+3\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{6}k^{2}k+\frac{1}{6}k^{2}\times 3+\frac{1}{2}kk+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Apply the distributive property by multiplying each term of \frac{1}{6}k^{2}+\frac{1}{2}k+\frac{1}{3} by each term of k+3.
\frac{1}{6}k^{3}+\frac{1}{6}k^{2}\times 3+\frac{1}{2}kk+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{6}k^{3}+\frac{1}{6}k^{2}\times 3+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply k and k to get k^{2}.
\frac{1}{6}k^{3}+\frac{3}{6}k^{2}+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{6}k^{3}+\frac{1}{2}k^{2}+\frac{1}{2}k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{6}k^{3}+k^{2}+\frac{1}{2}k\times 3+\frac{1}{3}k+\frac{1}{3}\times 3
Combine \frac{1}{2}k^{2} and \frac{1}{2}k^{2} to get k^{2}.
\frac{1}{6}k^{3}+k^{2}+\frac{3}{2}k+\frac{1}{3}k+\frac{1}{3}\times 3
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{1}{6}k^{3}+k^{2}+\frac{11}{6}k+\frac{1}{3}\times 3
Combine \frac{3}{2}k and \frac{1}{3}k to get \frac{11}{6}k.
\frac{1}{6}k^{3}+k^{2}+\frac{11}{6}k+1
Cancel out 3 and 3.