Evaluate
\frac{649}{24}\approx 27.041666667
Factor
\frac{11 \cdot 59}{2 ^ {3} \cdot 3} = 27\frac{1}{24} = 27.041666666666668
Share
Copied to clipboard
\frac{1}{6}\left(\frac{6+1}{2}-\frac{2\times 4+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Multiply 3 and 2 to get 6.
\frac{1}{6}\left(\frac{7}{2}-\frac{2\times 4+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Add 6 and 1 to get 7.
\frac{1}{6}\left(\frac{7}{2}-\frac{8+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Multiply 2 and 4 to get 8.
\frac{1}{6}\left(\frac{7}{2}-\frac{9}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Add 8 and 1 to get 9.
\frac{1}{6}\left(\frac{14}{4}-\frac{9}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Least common multiple of 2 and 4 is 4. Convert \frac{7}{2} and \frac{9}{4} to fractions with denominator 4.
\frac{1}{6}\times \frac{14-9}{4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Since \frac{14}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}\times \frac{5}{4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Subtract 9 from 14 to get 5.
\frac{1\times 5}{6\times 4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Multiply \frac{1}{6} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{24}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Do the multiplications in the fraction \frac{1\times 5}{6\times 4}.
\frac{5}{24}+\frac{\left(5\times 8+1\right)\times 16}{8\times 3}-\frac{1}{2}
Divide \frac{5\times 8+1}{8} by \frac{3}{16} by multiplying \frac{5\times 8+1}{8} by the reciprocal of \frac{3}{16}.
\frac{5}{24}+\frac{2\left(1+5\times 8\right)}{3}-\frac{1}{2}
Cancel out 8 in both numerator and denominator.
\frac{5}{24}+\frac{2\left(1+40\right)}{3}-\frac{1}{2}
Multiply 5 and 8 to get 40.
\frac{5}{24}+\frac{2\times 41}{3}-\frac{1}{2}
Add 1 and 40 to get 41.
\frac{5}{24}+\frac{82}{3}-\frac{1}{2}
Multiply 2 and 41 to get 82.
\frac{5}{24}+\frac{656}{24}-\frac{1}{2}
Least common multiple of 24 and 3 is 24. Convert \frac{5}{24} and \frac{82}{3} to fractions with denominator 24.
\frac{5+656}{24}-\frac{1}{2}
Since \frac{5}{24} and \frac{656}{24} have the same denominator, add them by adding their numerators.
\frac{661}{24}-\frac{1}{2}
Add 5 and 656 to get 661.
\frac{661}{24}-\frac{12}{24}
Least common multiple of 24 and 2 is 24. Convert \frac{661}{24} and \frac{1}{2} to fractions with denominator 24.
\frac{661-12}{24}
Since \frac{661}{24} and \frac{12}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{649}{24}
Subtract 12 from 661 to get 649.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}