Evaluate
\frac{13}{22}\approx 0.590909091
Factor
\frac{13}{2 \cdot 11} = 0.5909090909090909
Share
Copied to clipboard
\frac{5}{30}+\frac{16}{30}+\frac{3}{28}-\frac{2}{35}-\frac{7}{44}
Least common multiple of 6 and 15 is 30. Convert \frac{1}{6} and \frac{8}{15} to fractions with denominator 30.
\frac{5+16}{30}+\frac{3}{28}-\frac{2}{35}-\frac{7}{44}
Since \frac{5}{30} and \frac{16}{30} have the same denominator, add them by adding their numerators.
\frac{21}{30}+\frac{3}{28}-\frac{2}{35}-\frac{7}{44}
Add 5 and 16 to get 21.
\frac{7}{10}+\frac{3}{28}-\frac{2}{35}-\frac{7}{44}
Reduce the fraction \frac{21}{30} to lowest terms by extracting and canceling out 3.
\frac{98}{140}+\frac{15}{140}-\frac{2}{35}-\frac{7}{44}
Least common multiple of 10 and 28 is 140. Convert \frac{7}{10} and \frac{3}{28} to fractions with denominator 140.
\frac{98+15}{140}-\frac{2}{35}-\frac{7}{44}
Since \frac{98}{140} and \frac{15}{140} have the same denominator, add them by adding their numerators.
\frac{113}{140}-\frac{2}{35}-\frac{7}{44}
Add 98 and 15 to get 113.
\frac{113}{140}-\frac{8}{140}-\frac{7}{44}
Least common multiple of 140 and 35 is 140. Convert \frac{113}{140} and \frac{2}{35} to fractions with denominator 140.
\frac{113-8}{140}-\frac{7}{44}
Since \frac{113}{140} and \frac{8}{140} have the same denominator, subtract them by subtracting their numerators.
\frac{105}{140}-\frac{7}{44}
Subtract 8 from 113 to get 105.
\frac{3}{4}-\frac{7}{44}
Reduce the fraction \frac{105}{140} to lowest terms by extracting and canceling out 35.
\frac{33}{44}-\frac{7}{44}
Least common multiple of 4 and 44 is 44. Convert \frac{3}{4} and \frac{7}{44} to fractions with denominator 44.
\frac{33-7}{44}
Since \frac{33}{44} and \frac{7}{44} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{44}
Subtract 7 from 33 to get 26.
\frac{13}{22}
Reduce the fraction \frac{26}{44} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}