Evaluate
\frac{121}{96}\approx 1.260416667
Factor
\frac{11 ^ {2}}{2 ^ {5} \cdot 3} = 1\frac{25}{96} = 1.2604166666666667
Share
Copied to clipboard
\frac{1}{6}+\frac{5}{8}\times \frac{7}{4}
Divide \frac{5}{8} by \frac{4}{7} by multiplying \frac{5}{8} by the reciprocal of \frac{4}{7}.
\frac{1}{6}+\frac{5\times 7}{8\times 4}
Multiply \frac{5}{8} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{6}+\frac{35}{32}
Do the multiplications in the fraction \frac{5\times 7}{8\times 4}.
\frac{16}{96}+\frac{105}{96}
Least common multiple of 6 and 32 is 96. Convert \frac{1}{6} and \frac{35}{32} to fractions with denominator 96.
\frac{16+105}{96}
Since \frac{16}{96} and \frac{105}{96} have the same denominator, add them by adding their numerators.
\frac{121}{96}
Add 16 and 105 to get 121.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}