Solve for k
k=2
Share
Copied to clipboard
k+3-5k\times 3=-\left(5k+15\right)
Variable k cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by 5k\left(k+3\right), the least common multiple of 5k,k+3,k.
k+3-15k=-\left(5k+15\right)
Multiply 5 and 3 to get 15.
k+3-15k=-5k-15
To find the opposite of 5k+15, find the opposite of each term.
k+3-15k+5k=-15
Add 5k to both sides.
6k+3-15k=-15
Combine k and 5k to get 6k.
6k-15k=-15-3
Subtract 3 from both sides.
6k-15k=-18
Subtract 3 from -15 to get -18.
-9k=-18
Combine 6k and -15k to get -9k.
k=\frac{-18}{-9}
Divide both sides by -9.
k=2
Divide -18 by -9 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}