Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5+\sqrt{7}}{\left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right)}
Rationalize the denominator of \frac{1}{5-\sqrt{7}} by multiplying numerator and denominator by 5+\sqrt{7}.
\frac{5+\sqrt{7}}{5^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5+\sqrt{7}}{25-7}
Square 5. Square \sqrt{7}.
\frac{5+\sqrt{7}}{18}
Subtract 7 from 25 to get 18.