Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{5}x-3=\frac{5}{10}x\left(x+1\right)
Multiply 5 and \frac{1}{10} to get \frac{5}{10}.
\frac{1}{5}x-3=\frac{1}{2}x\left(x+1\right)
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{5}x-3=\frac{1}{2}xx+\frac{1}{2}x
Use the distributive property to multiply \frac{1}{2}x by x+1.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+\frac{1}{2}x
Multiply x and x to get x^{2}.
\frac{1}{5}x-3-\frac{1}{2}x^{2}=\frac{1}{2}x
Subtract \frac{1}{2}x^{2} from both sides.
\frac{1}{5}x-3-\frac{1}{2}x^{2}-\frac{1}{2}x=0
Subtract \frac{1}{2}x from both sides.
-\frac{3}{10}x-3-\frac{1}{2}x^{2}=0
Combine \frac{1}{5}x and -\frac{1}{2}x to get -\frac{3}{10}x.
-\frac{1}{2}x^{2}-\frac{3}{10}x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\left(-\frac{3}{10}\right)^{2}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, -\frac{3}{10} for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}+2\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-6}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -3.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{-\frac{591}{100}}}{2\left(-\frac{1}{2}\right)}
Add \frac{9}{100} to -6.
x=\frac{-\left(-\frac{3}{10}\right)±\frac{\sqrt{591}i}{10}}{2\left(-\frac{1}{2}\right)}
Take the square root of -\frac{591}{100}.
x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{2\left(-\frac{1}{2}\right)}
The opposite of -\frac{3}{10} is \frac{3}{10}.
x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{3+\sqrt{591}i}{-10}
Now solve the equation x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1} when ± is plus. Add \frac{3}{10} to \frac{i\sqrt{591}}{10}.
x=\frac{-\sqrt{591}i-3}{10}
Divide \frac{3+i\sqrt{591}}{10} by -1.
x=\frac{-\sqrt{591}i+3}{-10}
Now solve the equation x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1} when ± is minus. Subtract \frac{i\sqrt{591}}{10} from \frac{3}{10}.
x=\frac{-3+\sqrt{591}i}{10}
Divide \frac{3-i\sqrt{591}}{10} by -1.
x=\frac{-\sqrt{591}i-3}{10} x=\frac{-3+\sqrt{591}i}{10}
The equation is now solved.
\frac{1}{5}x-3=\frac{5}{10}x\left(x+1\right)
Multiply 5 and \frac{1}{10} to get \frac{5}{10}.
\frac{1}{5}x-3=\frac{1}{2}x\left(x+1\right)
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{5}x-3=\frac{1}{2}xx+\frac{1}{2}x
Use the distributive property to multiply \frac{1}{2}x by x+1.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+\frac{1}{2}x
Multiply x and x to get x^{2}.
\frac{1}{5}x-3-\frac{1}{2}x^{2}=\frac{1}{2}x
Subtract \frac{1}{2}x^{2} from both sides.
\frac{1}{5}x-3-\frac{1}{2}x^{2}-\frac{1}{2}x=0
Subtract \frac{1}{2}x from both sides.
-\frac{3}{10}x-3-\frac{1}{2}x^{2}=0
Combine \frac{1}{5}x and -\frac{1}{2}x to get -\frac{3}{10}x.
-\frac{3}{10}x-\frac{1}{2}x^{2}=3
Add 3 to both sides. Anything plus zero gives itself.
-\frac{1}{2}x^{2}-\frac{3}{10}x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}-\frac{3}{10}x}{-\frac{1}{2}}=\frac{3}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\left(-\frac{\frac{3}{10}}{-\frac{1}{2}}\right)x=\frac{3}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}+\frac{3}{5}x=\frac{3}{-\frac{1}{2}}
Divide -\frac{3}{10} by -\frac{1}{2} by multiplying -\frac{3}{10} by the reciprocal of -\frac{1}{2}.
x^{2}+\frac{3}{5}x=-6
Divide 3 by -\frac{1}{2} by multiplying 3 by the reciprocal of -\frac{1}{2}.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=-6+\left(\frac{3}{10}\right)^{2}
Divide \frac{3}{5}, the coefficient of the x term, by 2 to get \frac{3}{10}. Then add the square of \frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-6+\frac{9}{100}
Square \frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-\frac{591}{100}
Add -6 to \frac{9}{100}.
\left(x+\frac{3}{10}\right)^{2}=-\frac{591}{100}
Factor x^{2}+\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{-\frac{591}{100}}
Take the square root of both sides of the equation.
x+\frac{3}{10}=\frac{\sqrt{591}i}{10} x+\frac{3}{10}=-\frac{\sqrt{591}i}{10}
Simplify.
x=\frac{-3+\sqrt{591}i}{10} x=\frac{-\sqrt{591}i-3}{10}
Subtract \frac{3}{10} from both sides of the equation.