Solve for x
x = \frac{225}{13} = 17\frac{4}{13} \approx 17.307692308
Graph
Share
Copied to clipboard
12x-60\left(\frac{2}{3}x-\left(\frac{1-x}{2}+4\right)\right)=45\left(1-x\right)
Multiply both sides of the equation by 60, the least common multiple of 5,3,2,4.
12x-60\left(\frac{2}{3}x-\frac{1-x}{2}-4\right)=45\left(1-x\right)
To find the opposite of \frac{1-x}{2}+4, find the opposite of each term.
12x-60\left(\frac{2}{3}x-\frac{1-x}{2}-4\right)=45-45x
Use the distributive property to multiply 45 by 1-x.
12x-60\left(\frac{2}{3}x-\left(\frac{1}{2}-\frac{1}{2}x\right)-4\right)=45-45x
Divide each term of 1-x by 2 to get \frac{1}{2}-\frac{1}{2}x.
12x-60\left(\frac{2}{3}x-\frac{1}{2}-\left(-\frac{1}{2}x\right)-4\right)=45-45x
To find the opposite of \frac{1}{2}-\frac{1}{2}x, find the opposite of each term.
12x-60\left(\frac{2}{3}x-\frac{1}{2}+\frac{1}{2}x-4\right)=45-45x
The opposite of -\frac{1}{2}x is \frac{1}{2}x.
12x-60\left(\frac{7}{6}x-\frac{1}{2}-4\right)=45-45x
Combine \frac{2}{3}x and \frac{1}{2}x to get \frac{7}{6}x.
12x-60\left(\frac{7}{6}x-\frac{1}{2}-\frac{8}{2}\right)=45-45x
Convert 4 to fraction \frac{8}{2}.
12x-60\left(\frac{7}{6}x+\frac{-1-8}{2}\right)=45-45x
Since -\frac{1}{2} and \frac{8}{2} have the same denominator, subtract them by subtracting their numerators.
12x-60\left(\frac{7}{6}x-\frac{9}{2}\right)=45-45x
Subtract 8 from -1 to get -9.
12x-60\times \frac{7}{6}x-60\left(-\frac{9}{2}\right)=45-45x
Use the distributive property to multiply -60 by \frac{7}{6}x-\frac{9}{2}.
12x+\frac{-60\times 7}{6}x-60\left(-\frac{9}{2}\right)=45-45x
Express -60\times \frac{7}{6} as a single fraction.
12x+\frac{-420}{6}x-60\left(-\frac{9}{2}\right)=45-45x
Multiply -60 and 7 to get -420.
12x-70x-60\left(-\frac{9}{2}\right)=45-45x
Divide -420 by 6 to get -70.
12x-70x+\frac{-60\left(-9\right)}{2}=45-45x
Express -60\left(-\frac{9}{2}\right) as a single fraction.
12x-70x+\frac{540}{2}=45-45x
Multiply -60 and -9 to get 540.
12x-70x+270=45-45x
Divide 540 by 2 to get 270.
-58x+270=45-45x
Combine 12x and -70x to get -58x.
-58x+270+45x=45
Add 45x to both sides.
-13x+270=45
Combine -58x and 45x to get -13x.
-13x=45-270
Subtract 270 from both sides.
-13x=-225
Subtract 270 from 45 to get -225.
x=\frac{-225}{-13}
Divide both sides by -13.
x=\frac{225}{13}
Fraction \frac{-225}{-13} can be simplified to \frac{225}{13} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}