Evaluate
\frac{x}{8}+2
Expand
\frac{x}{8}+2
Graph
Share
Copied to clipboard
\frac{\frac{1}{5}x\times 5}{2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Divide \frac{1}{5}x by \frac{2}{5} by multiplying \frac{1}{5}x by the reciprocal of \frac{2}{5}.
\frac{x}{2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Cancel out 5 and 5.
\frac{x}{2}\left(\frac{2}{4}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{x}{2}\times \frac{2-1}{4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Since \frac{2}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{2}\times \frac{1}{4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Subtract 1 from 2 to get 1.
\frac{x}{2\times 4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Multiply \frac{x}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{2\times 4}-\frac{\left(2\times 3+2\right)\times 3}{3\left(-2\right)}\times \frac{1}{2}
Divide \frac{2\times 3+2}{3} by -\frac{2}{3} by multiplying \frac{2\times 3+2}{3} by the reciprocal of -\frac{2}{3}.
\frac{x}{2\times 4}-\frac{2+2\times 3}{-2}\times \frac{1}{2}
Cancel out 3 in both numerator and denominator.
\frac{x}{2\times 4}-\frac{2+6}{-2}\times \frac{1}{2}
Multiply 2 and 3 to get 6.
\frac{x}{2\times 4}-\frac{8}{-2}\times \frac{1}{2}
Add 2 and 6 to get 8.
\frac{x}{2\times 4}-\left(-4\times \frac{1}{2}\right)
Divide 8 by -2 to get -4.
\frac{x}{2\times 4}-\frac{-4}{2}
Multiply -4 and \frac{1}{2} to get \frac{-4}{2}.
\frac{x}{2\times 4}-\left(-2\right)
Divide -4 by 2 to get -2.
\frac{x}{2\times 4}+2
The opposite of -2 is 2.
\frac{x}{2\times 4}+\frac{2\times 2\times 4}{2\times 4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2\times 4}{2\times 4}.
\frac{x+2\times 2\times 4}{2\times 4}
Since \frac{x}{2\times 4} and \frac{2\times 2\times 4}{2\times 4} have the same denominator, add them by adding their numerators.
\frac{x+16}{2\times 4}
Do the multiplications in x+2\times 2\times 4.
\frac{x+16}{8}
Expand 2\times 4.
\frac{\frac{1}{5}x\times 5}{2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Divide \frac{1}{5}x by \frac{2}{5} by multiplying \frac{1}{5}x by the reciprocal of \frac{2}{5}.
\frac{x}{2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Cancel out 5 and 5.
\frac{x}{2}\left(\frac{2}{4}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{x}{2}\times \frac{2-1}{4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Since \frac{2}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{2}\times \frac{1}{4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Subtract 1 from 2 to get 1.
\frac{x}{2\times 4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Multiply \frac{x}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{2\times 4}-\frac{\left(2\times 3+2\right)\times 3}{3\left(-2\right)}\times \frac{1}{2}
Divide \frac{2\times 3+2}{3} by -\frac{2}{3} by multiplying \frac{2\times 3+2}{3} by the reciprocal of -\frac{2}{3}.
\frac{x}{2\times 4}-\frac{2+2\times 3}{-2}\times \frac{1}{2}
Cancel out 3 in both numerator and denominator.
\frac{x}{2\times 4}-\frac{2+6}{-2}\times \frac{1}{2}
Multiply 2 and 3 to get 6.
\frac{x}{2\times 4}-\frac{8}{-2}\times \frac{1}{2}
Add 2 and 6 to get 8.
\frac{x}{2\times 4}-\left(-4\times \frac{1}{2}\right)
Divide 8 by -2 to get -4.
\frac{x}{2\times 4}-\frac{-4}{2}
Multiply -4 and \frac{1}{2} to get \frac{-4}{2}.
\frac{x}{2\times 4}-\left(-2\right)
Divide -4 by 2 to get -2.
\frac{x}{2\times 4}+2
The opposite of -2 is 2.
\frac{x}{2\times 4}+\frac{2\times 2\times 4}{2\times 4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2\times 4}{2\times 4}.
\frac{x+2\times 2\times 4}{2\times 4}
Since \frac{x}{2\times 4} and \frac{2\times 2\times 4}{2\times 4} have the same denominator, add them by adding their numerators.
\frac{x+16}{2\times 4}
Do the multiplications in x+2\times 2\times 4.
\frac{x+16}{8}
Expand 2\times 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}