\frac { 1 } { 5 } - \frac { 1 } { 6 } | + | \frac { 1 } { 7 } - \frac { 1 } { 6 } | - | \frac { 1 } { 5 } - \frac { 1 } { 7 } |
Evaluate
\frac{7}{36}\approx 0.194444444
Factor
\frac{7}{2 ^ {2} \cdot 3 ^ {2}} = 0.19444444444444445
Share
Copied to clipboard
\frac{1}{5}-\frac{1}{6}||\frac{6}{42}-\frac{7}{42}|-|\frac{1}{5}-\frac{1}{7}||
Least common multiple of 7 and 6 is 42. Convert \frac{1}{7} and \frac{1}{6} to fractions with denominator 42.
\frac{1}{5}-\frac{1}{6}||\frac{6-7}{42}|-|\frac{1}{5}-\frac{1}{7}||
Since \frac{6}{42} and \frac{7}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}-\frac{1}{6}||-\frac{1}{42}|-|\frac{1}{5}-\frac{1}{7}||
Subtract 7 from 6 to get -1.
\frac{1}{5}-\frac{1}{6}|\frac{1}{42}-|\frac{1}{5}-\frac{1}{7}||
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{42} is \frac{1}{42}.
\frac{1}{5}-\frac{1}{6}|\frac{1}{42}-|\frac{7}{35}-\frac{5}{35}||
Least common multiple of 5 and 7 is 35. Convert \frac{1}{5} and \frac{1}{7} to fractions with denominator 35.
\frac{1}{5}-\frac{1}{6}|\frac{1}{42}-|\frac{7-5}{35}||
Since \frac{7}{35} and \frac{5}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}-\frac{1}{6}|\frac{1}{42}-|\frac{2}{35}||
Subtract 5 from 7 to get 2.
\frac{1}{5}-\frac{1}{6}|\frac{1}{42}-\frac{2}{35}|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{2}{35} is \frac{2}{35}.
\frac{1}{5}-\frac{1}{6}|\frac{5}{210}-\frac{12}{210}|
Least common multiple of 42 and 35 is 210. Convert \frac{1}{42} and \frac{2}{35} to fractions with denominator 210.
\frac{1}{5}-\frac{1}{6}|\frac{5-12}{210}|
Since \frac{5}{210} and \frac{12}{210} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}-\frac{1}{6}|\frac{-7}{210}|
Subtract 12 from 5 to get -7.
\frac{1}{5}-\frac{1}{6}|-\frac{1}{30}|
Reduce the fraction \frac{-7}{210} to lowest terms by extracting and canceling out 7.
\frac{1}{5}-\frac{1}{6}\times \frac{1}{30}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{30} is \frac{1}{30}.
\frac{1}{5}-\frac{1\times 1}{6\times 30}
Multiply \frac{1}{6} times \frac{1}{30} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}-\frac{1}{180}
Do the multiplications in the fraction \frac{1\times 1}{6\times 30}.
\frac{36}{180}-\frac{1}{180}
Least common multiple of 5 and 180 is 180. Convert \frac{1}{5} and \frac{1}{180} to fractions with denominator 180.
\frac{36-1}{180}
Since \frac{36}{180} and \frac{1}{180} have the same denominator, subtract them by subtracting their numerators.
\frac{35}{180}
Subtract 1 from 36 to get 35.
\frac{7}{36}
Reduce the fraction \frac{35}{180} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}