Solve for y
y=38
Graph
Share
Copied to clipboard
\frac{1}{5}y+\frac{1}{5}\left(-3\right)=\frac{1}{6}\left(y+4\right)
Use the distributive property to multiply \frac{1}{5} by y-3.
\frac{1}{5}y+\frac{-3}{5}=\frac{1}{6}\left(y+4\right)
Multiply \frac{1}{5} and -3 to get \frac{-3}{5}.
\frac{1}{5}y-\frac{3}{5}=\frac{1}{6}\left(y+4\right)
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
\frac{1}{5}y-\frac{3}{5}=\frac{1}{6}y+\frac{1}{6}\times 4
Use the distributive property to multiply \frac{1}{6} by y+4.
\frac{1}{5}y-\frac{3}{5}=\frac{1}{6}y+\frac{4}{6}
Multiply \frac{1}{6} and 4 to get \frac{4}{6}.
\frac{1}{5}y-\frac{3}{5}=\frac{1}{6}y+\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{5}y-\frac{3}{5}-\frac{1}{6}y=\frac{2}{3}
Subtract \frac{1}{6}y from both sides.
\frac{1}{30}y-\frac{3}{5}=\frac{2}{3}
Combine \frac{1}{5}y and -\frac{1}{6}y to get \frac{1}{30}y.
\frac{1}{30}y=\frac{2}{3}+\frac{3}{5}
Add \frac{3}{5} to both sides.
\frac{1}{30}y=\frac{10}{15}+\frac{9}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{3}{5} to fractions with denominator 15.
\frac{1}{30}y=\frac{10+9}{15}
Since \frac{10}{15} and \frac{9}{15} have the same denominator, add them by adding their numerators.
\frac{1}{30}y=\frac{19}{15}
Add 10 and 9 to get 19.
y=\frac{19}{15}\times 30
Multiply both sides by 30, the reciprocal of \frac{1}{30}.
y=\frac{19\times 30}{15}
Express \frac{19}{15}\times 30 as a single fraction.
y=\frac{570}{15}
Multiply 19 and 30 to get 570.
y=38
Divide 570 by 15 to get 38.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}