Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{5}x+\frac{1}{5}\left(-2\right)-\left(2x-3\right)=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
Use the distributive property to multiply \frac{1}{5} by x-2.
\frac{1}{5}x+\frac{-2}{5}-\left(2x-3\right)=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
Multiply \frac{1}{5} and -2 to get \frac{-2}{5}.
\frac{1}{5}x-\frac{2}{5}-\left(2x-3\right)=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
\frac{1}{5}x-\frac{2}{5}-2x-\left(-3\right)=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
To find the opposite of 2x-3, find the opposite of each term.
\frac{1}{5}x-\frac{2}{5}-2x+3=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
The opposite of -3 is 3.
-\frac{9}{5}x-\frac{2}{5}+3=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
Combine \frac{1}{5}x and -2x to get -\frac{9}{5}x.
-\frac{9}{5}x-\frac{2}{5}+\frac{15}{5}=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
Convert 3 to fraction \frac{15}{5}.
-\frac{9}{5}x+\frac{-2+15}{5}=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
Since -\frac{2}{5} and \frac{15}{5} have the same denominator, add them by adding their numerators.
-\frac{9}{5}x+\frac{13}{5}=\frac{2}{3}\left(4x+1\right)-\frac{1}{6}\left(2x-7\right)
Add -2 and 15 to get 13.
-\frac{9}{5}x+\frac{13}{5}=\frac{2}{3}\times 4x+\frac{2}{3}-\frac{1}{6}\left(2x-7\right)
Use the distributive property to multiply \frac{2}{3} by 4x+1.
-\frac{9}{5}x+\frac{13}{5}=\frac{2\times 4}{3}x+\frac{2}{3}-\frac{1}{6}\left(2x-7\right)
Express \frac{2}{3}\times 4 as a single fraction.
-\frac{9}{5}x+\frac{13}{5}=\frac{8}{3}x+\frac{2}{3}-\frac{1}{6}\left(2x-7\right)
Multiply 2 and 4 to get 8.
-\frac{9}{5}x+\frac{13}{5}=\frac{8}{3}x+\frac{2}{3}-\frac{1}{6}\times 2x-\frac{1}{6}\left(-7\right)
Use the distributive property to multiply -\frac{1}{6} by 2x-7.
-\frac{9}{5}x+\frac{13}{5}=\frac{8}{3}x+\frac{2}{3}+\frac{-2}{6}x-\frac{1}{6}\left(-7\right)
Express -\frac{1}{6}\times 2 as a single fraction.
-\frac{9}{5}x+\frac{13}{5}=\frac{8}{3}x+\frac{2}{3}-\frac{1}{3}x-\frac{1}{6}\left(-7\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
-\frac{9}{5}x+\frac{13}{5}=\frac{8}{3}x+\frac{2}{3}-\frac{1}{3}x+\frac{-\left(-7\right)}{6}
Express -\frac{1}{6}\left(-7\right) as a single fraction.
-\frac{9}{5}x+\frac{13}{5}=\frac{8}{3}x+\frac{2}{3}-\frac{1}{3}x+\frac{7}{6}
Multiply -1 and -7 to get 7.
-\frac{9}{5}x+\frac{13}{5}=\frac{7}{3}x+\frac{2}{3}+\frac{7}{6}
Combine \frac{8}{3}x and -\frac{1}{3}x to get \frac{7}{3}x.
-\frac{9}{5}x+\frac{13}{5}=\frac{7}{3}x+\frac{4}{6}+\frac{7}{6}
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{7}{6} to fractions with denominator 6.
-\frac{9}{5}x+\frac{13}{5}=\frac{7}{3}x+\frac{4+7}{6}
Since \frac{4}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
-\frac{9}{5}x+\frac{13}{5}=\frac{7}{3}x+\frac{11}{6}
Add 4 and 7 to get 11.
-\frac{9}{5}x+\frac{13}{5}-\frac{7}{3}x=\frac{11}{6}
Subtract \frac{7}{3}x from both sides.
-\frac{62}{15}x+\frac{13}{5}=\frac{11}{6}
Combine -\frac{9}{5}x and -\frac{7}{3}x to get -\frac{62}{15}x.
-\frac{62}{15}x=\frac{11}{6}-\frac{13}{5}
Subtract \frac{13}{5} from both sides.
-\frac{62}{15}x=\frac{55}{30}-\frac{78}{30}
Least common multiple of 6 and 5 is 30. Convert \frac{11}{6} and \frac{13}{5} to fractions with denominator 30.
-\frac{62}{15}x=\frac{55-78}{30}
Since \frac{55}{30} and \frac{78}{30} have the same denominator, subtract them by subtracting their numerators.
-\frac{62}{15}x=-\frac{23}{30}
Subtract 78 from 55 to get -23.
x=-\frac{23}{30}\left(-\frac{15}{62}\right)
Multiply both sides by -\frac{15}{62}, the reciprocal of -\frac{62}{15}.
x=\frac{-23\left(-15\right)}{30\times 62}
Multiply -\frac{23}{30} times -\frac{15}{62} by multiplying numerator times numerator and denominator times denominator.
x=\frac{345}{1860}
Do the multiplications in the fraction \frac{-23\left(-15\right)}{30\times 62}.
x=\frac{23}{124}
Reduce the fraction \frac{345}{1860} to lowest terms by extracting and canceling out 15.