Solve for x
x\geq -\frac{19}{8}
Graph
Share
Copied to clipboard
\frac{1}{5}x+\frac{1}{5}\left(-2\right)-\left(1+2x-\left(x+\frac{1}{2}\right)\right)\leq 1
Use the distributive property to multiply \frac{1}{5} by x-2.
\frac{1}{5}x+\frac{-2}{5}-\left(1+2x-\left(x+\frac{1}{2}\right)\right)\leq 1
Multiply \frac{1}{5} and -2 to get \frac{-2}{5}.
\frac{1}{5}x-\frac{2}{5}-\left(1+2x-\left(x+\frac{1}{2}\right)\right)\leq 1
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
\frac{1}{5}x-\frac{2}{5}-\left(1+2x-x-\frac{1}{2}\right)\leq 1
To find the opposite of x+\frac{1}{2}, find the opposite of each term.
\frac{1}{5}x-\frac{2}{5}-\left(1+x-\frac{1}{2}\right)\leq 1
Combine 2x and -x to get x.
\frac{1}{5}x-\frac{2}{5}-\left(\frac{2}{2}+x-\frac{1}{2}\right)\leq 1
Convert 1 to fraction \frac{2}{2}.
\frac{1}{5}x-\frac{2}{5}-\left(\frac{2-1}{2}+x\right)\leq 1
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}x-\frac{2}{5}-\left(\frac{1}{2}+x\right)\leq 1
Subtract 1 from 2 to get 1.
\frac{1}{5}x-\frac{2}{5}-\frac{1}{2}-x\leq 1
To find the opposite of \frac{1}{2}+x, find the opposite of each term.
\frac{1}{5}x-\frac{4}{10}-\frac{5}{10}-x\leq 1
Least common multiple of 5 and 2 is 10. Convert -\frac{2}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{1}{5}x+\frac{-4-5}{10}-x\leq 1
Since -\frac{4}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}x-\frac{9}{10}-x\leq 1
Subtract 5 from -4 to get -9.
-\frac{4}{5}x-\frac{9}{10}\leq 1
Combine \frac{1}{5}x and -x to get -\frac{4}{5}x.
-\frac{4}{5}x\leq 1+\frac{9}{10}
Add \frac{9}{10} to both sides.
-\frac{4}{5}x\leq \frac{10}{10}+\frac{9}{10}
Convert 1 to fraction \frac{10}{10}.
-\frac{4}{5}x\leq \frac{10+9}{10}
Since \frac{10}{10} and \frac{9}{10} have the same denominator, add them by adding their numerators.
-\frac{4}{5}x\leq \frac{19}{10}
Add 10 and 9 to get 19.
x\geq \frac{19}{10}\left(-\frac{5}{4}\right)
Multiply both sides by -\frac{5}{4}, the reciprocal of -\frac{4}{5}. Since -\frac{4}{5} is negative, the inequality direction is changed.
x\geq \frac{19\left(-5\right)}{10\times 4}
Multiply \frac{19}{10} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{-95}{40}
Do the multiplications in the fraction \frac{19\left(-5\right)}{10\times 4}.
x\geq -\frac{19}{8}
Reduce the fraction \frac{-95}{40} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}