Solve for x
x>\frac{10}{9}
Graph
Share
Copied to clipboard
\frac{1}{5}x+\frac{1}{5}\times 5<\frac{1}{6}\left(3x+4\right)
Use the distributive property to multiply \frac{1}{5} by x+5.
\frac{1}{5}x+1<\frac{1}{6}\left(3x+4\right)
Cancel out 5 and 5.
\frac{1}{5}x+1<\frac{1}{6}\times 3x+\frac{1}{6}\times 4
Use the distributive property to multiply \frac{1}{6} by 3x+4.
\frac{1}{5}x+1<\frac{3}{6}x+\frac{1}{6}\times 4
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{5}x+1<\frac{1}{2}x+\frac{1}{6}\times 4
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{5}x+1<\frac{1}{2}x+\frac{4}{6}
Multiply \frac{1}{6} and 4 to get \frac{4}{6}.
\frac{1}{5}x+1<\frac{1}{2}x+\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{5}x+1-\frac{1}{2}x<\frac{2}{3}
Subtract \frac{1}{2}x from both sides.
-\frac{3}{10}x+1<\frac{2}{3}
Combine \frac{1}{5}x and -\frac{1}{2}x to get -\frac{3}{10}x.
-\frac{3}{10}x<\frac{2}{3}-1
Subtract 1 from both sides.
-\frac{3}{10}x<\frac{2}{3}-\frac{3}{3}
Convert 1 to fraction \frac{3}{3}.
-\frac{3}{10}x<\frac{2-3}{3}
Since \frac{2}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{10}x<-\frac{1}{3}
Subtract 3 from 2 to get -1.
x>-\frac{1}{3}\left(-\frac{10}{3}\right)
Multiply both sides by -\frac{10}{3}, the reciprocal of -\frac{3}{10}. Since -\frac{3}{10} is negative, the inequality direction is changed.
x>\frac{-\left(-10\right)}{3\times 3}
Multiply -\frac{1}{3} times -\frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
x>\frac{10}{9}
Do the multiplications in the fraction \frac{-\left(-10\right)}{3\times 3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}