Solve for n
n = \frac{13}{4} = 3\frac{1}{4} = 3.25
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 5 } ( 2 n + 1 ) = \frac { 2 } { 3 } ( n - 1 )
Share
Copied to clipboard
\frac{1}{5}\times 2n+\frac{1}{5}=\frac{2}{3}\left(n-1\right)
Use the distributive property to multiply \frac{1}{5} by 2n+1.
\frac{2}{5}n+\frac{1}{5}=\frac{2}{3}\left(n-1\right)
Multiply \frac{1}{5} and 2 to get \frac{2}{5}.
\frac{2}{5}n+\frac{1}{5}=\frac{2}{3}n+\frac{2}{3}\left(-1\right)
Use the distributive property to multiply \frac{2}{3} by n-1.
\frac{2}{5}n+\frac{1}{5}=\frac{2}{3}n-\frac{2}{3}
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{2}{5}n+\frac{1}{5}-\frac{2}{3}n=-\frac{2}{3}
Subtract \frac{2}{3}n from both sides.
-\frac{4}{15}n+\frac{1}{5}=-\frac{2}{3}
Combine \frac{2}{5}n and -\frac{2}{3}n to get -\frac{4}{15}n.
-\frac{4}{15}n=-\frac{2}{3}-\frac{1}{5}
Subtract \frac{1}{5} from both sides.
-\frac{4}{15}n=-\frac{10}{15}-\frac{3}{15}
Least common multiple of 3 and 5 is 15. Convert -\frac{2}{3} and \frac{1}{5} to fractions with denominator 15.
-\frac{4}{15}n=\frac{-10-3}{15}
Since -\frac{10}{15} and \frac{3}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{15}n=-\frac{13}{15}
Subtract 3 from -10 to get -13.
n=-\frac{13}{15}\left(-\frac{15}{4}\right)
Multiply both sides by -\frac{15}{4}, the reciprocal of -\frac{4}{15}.
n=\frac{-13\left(-15\right)}{15\times 4}
Multiply -\frac{13}{15} times -\frac{15}{4} by multiplying numerator times numerator and denominator times denominator.
n=\frac{195}{60}
Do the multiplications in the fraction \frac{-13\left(-15\right)}{15\times 4}.
n=\frac{13}{4}
Reduce the fraction \frac{195}{60} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}