Evaluate
-\frac{37}{60}\approx -0.616666667
Factor
-\frac{37}{60} = -0.6166666666666667
Share
Copied to clipboard
\frac{1\times 2}{5\times 3}-\frac{\frac{1\times 3+2}{3}}{\frac{2\times 9+2}{9}}
Multiply \frac{1}{5} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{15}-\frac{\frac{1\times 3+2}{3}}{\frac{2\times 9+2}{9}}
Do the multiplications in the fraction \frac{1\times 2}{5\times 3}.
\frac{2}{15}-\frac{\left(1\times 3+2\right)\times 9}{3\left(2\times 9+2\right)}
Divide \frac{1\times 3+2}{3} by \frac{2\times 9+2}{9} by multiplying \frac{1\times 3+2}{3} by the reciprocal of \frac{2\times 9+2}{9}.
\frac{2}{15}-\frac{3\left(2+3\right)}{2+2\times 9}
Cancel out 3 in both numerator and denominator.
\frac{2}{15}-\frac{3\times 5}{2+2\times 9}
Add 2 and 3 to get 5.
\frac{2}{15}-\frac{15}{2+2\times 9}
Multiply 3 and 5 to get 15.
\frac{2}{15}-\frac{15}{2+18}
Multiply 2 and 9 to get 18.
\frac{2}{15}-\frac{15}{20}
Add 2 and 18 to get 20.
\frac{2}{15}-\frac{3}{4}
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
\frac{8}{60}-\frac{45}{60}
Least common multiple of 15 and 4 is 60. Convert \frac{2}{15} and \frac{3}{4} to fractions with denominator 60.
\frac{8-45}{60}
Since \frac{8}{60} and \frac{45}{60} have the same denominator, subtract them by subtracting their numerators.
-\frac{37}{60}
Subtract 45 from 8 to get -37.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}