Solve for x
x = \frac{3 \sqrt{15385} + 375}{2} \approx 373.554427521
x = \frac{375 - 3 \sqrt{15385}}{2} \approx 1.445572479
Graph
Share
Copied to clipboard
\frac{1}{15}x^{2}-25x+36=0
Multiply \frac{1}{5} and \frac{1}{3} to get \frac{1}{15}.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times \frac{1}{15}\times 36}}{2\times \frac{1}{15}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{15} for a, -25 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times \frac{1}{15}\times 36}}{2\times \frac{1}{15}}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-\frac{4}{15}\times 36}}{2\times \frac{1}{15}}
Multiply -4 times \frac{1}{15}.
x=\frac{-\left(-25\right)±\sqrt{625-\frac{48}{5}}}{2\times \frac{1}{15}}
Multiply -\frac{4}{15} times 36.
x=\frac{-\left(-25\right)±\sqrt{\frac{3077}{5}}}{2\times \frac{1}{15}}
Add 625 to -\frac{48}{5}.
x=\frac{-\left(-25\right)±\frac{\sqrt{15385}}{5}}{2\times \frac{1}{15}}
Take the square root of \frac{3077}{5}.
x=\frac{25±\frac{\sqrt{15385}}{5}}{2\times \frac{1}{15}}
The opposite of -25 is 25.
x=\frac{25±\frac{\sqrt{15385}}{5}}{\frac{2}{15}}
Multiply 2 times \frac{1}{15}.
x=\frac{\frac{\sqrt{15385}}{5}+25}{\frac{2}{15}}
Now solve the equation x=\frac{25±\frac{\sqrt{15385}}{5}}{\frac{2}{15}} when ± is plus. Add 25 to \frac{\sqrt{15385}}{5}.
x=\frac{3\sqrt{15385}+375}{2}
Divide 25+\frac{\sqrt{15385}}{5} by \frac{2}{15} by multiplying 25+\frac{\sqrt{15385}}{5} by the reciprocal of \frac{2}{15}.
x=\frac{-\frac{\sqrt{15385}}{5}+25}{\frac{2}{15}}
Now solve the equation x=\frac{25±\frac{\sqrt{15385}}{5}}{\frac{2}{15}} when ± is minus. Subtract \frac{\sqrt{15385}}{5} from 25.
x=\frac{375-3\sqrt{15385}}{2}
Divide 25-\frac{\sqrt{15385}}{5} by \frac{2}{15} by multiplying 25-\frac{\sqrt{15385}}{5} by the reciprocal of \frac{2}{15}.
x=\frac{3\sqrt{15385}+375}{2} x=\frac{375-3\sqrt{15385}}{2}
The equation is now solved.
\frac{1}{15}x^{2}-25x+36=0
Multiply \frac{1}{5} and \frac{1}{3} to get \frac{1}{15}.
\frac{1}{15}x^{2}-25x=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{15}x^{2}-25x}{\frac{1}{15}}=-\frac{36}{\frac{1}{15}}
Multiply both sides by 15.
x^{2}+\left(-\frac{25}{\frac{1}{15}}\right)x=-\frac{36}{\frac{1}{15}}
Dividing by \frac{1}{15} undoes the multiplication by \frac{1}{15}.
x^{2}-375x=-\frac{36}{\frac{1}{15}}
Divide -25 by \frac{1}{15} by multiplying -25 by the reciprocal of \frac{1}{15}.
x^{2}-375x=-540
Divide -36 by \frac{1}{15} by multiplying -36 by the reciprocal of \frac{1}{15}.
x^{2}-375x+\left(-\frac{375}{2}\right)^{2}=-540+\left(-\frac{375}{2}\right)^{2}
Divide -375, the coefficient of the x term, by 2 to get -\frac{375}{2}. Then add the square of -\frac{375}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-375x+\frac{140625}{4}=-540+\frac{140625}{4}
Square -\frac{375}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-375x+\frac{140625}{4}=\frac{138465}{4}
Add -540 to \frac{140625}{4}.
\left(x-\frac{375}{2}\right)^{2}=\frac{138465}{4}
Factor x^{2}-375x+\frac{140625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{375}{2}\right)^{2}}=\sqrt{\frac{138465}{4}}
Take the square root of both sides of the equation.
x-\frac{375}{2}=\frac{3\sqrt{15385}}{2} x-\frac{375}{2}=-\frac{3\sqrt{15385}}{2}
Simplify.
x=\frac{3\sqrt{15385}+375}{2} x=\frac{375-3\sqrt{15385}}{2}
Add \frac{375}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}