Evaluate
\frac{17}{8}=2.125
Factor
\frac{17}{2 ^ {3}} = 2\frac{1}{8} = 2.125
Share
Copied to clipboard
\frac{1}{5}\times \frac{5}{2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{\frac{2}{3}}\left(-\frac{1}{2}\right)
Divide \frac{1}{5} by \frac{2}{5} by multiplying \frac{1}{5} by the reciprocal of \frac{2}{5}.
\frac{1\times 5}{5\times 2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{\frac{2}{3}}\left(-\frac{1}{2}\right)
Multiply \frac{1}{5} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{\frac{2}{3}}\left(-\frac{1}{2}\right)
Cancel out 5 in both numerator and denominator.
\frac{1}{2}\left(\frac{2}{4}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{\frac{2}{3}}\left(-\frac{1}{2}\right)
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{1}{2}\times \frac{2-1}{4}-\frac{\frac{2\times 3+2}{3}}{\frac{2}{3}}\left(-\frac{1}{2}\right)
Since \frac{2}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\times \frac{1}{4}-\frac{\frac{2\times 3+2}{3}}{\frac{2}{3}}\left(-\frac{1}{2}\right)
Subtract 1 from 2 to get 1.
\frac{1\times 1}{2\times 4}-\frac{\frac{2\times 3+2}{3}}{\frac{2}{3}}\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{8}-\frac{\frac{2\times 3+2}{3}}{\frac{2}{3}}\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\times 1}{2\times 4}.
\frac{1}{8}-\frac{\left(2\times 3+2\right)\times 3}{3\times 2}\left(-\frac{1}{2}\right)
Divide \frac{2\times 3+2}{3} by \frac{2}{3} by multiplying \frac{2\times 3+2}{3} by the reciprocal of \frac{2}{3}.
\frac{1}{8}-\frac{2+2\times 3}{2}\left(-\frac{1}{2}\right)
Cancel out 3 in both numerator and denominator.
\frac{1}{8}-\frac{2+6}{2}\left(-\frac{1}{2}\right)
Multiply 2 and 3 to get 6.
\frac{1}{8}-\frac{8}{2}\left(-\frac{1}{2}\right)
Add 2 and 6 to get 8.
\frac{1}{8}-4\left(-\frac{1}{2}\right)
Divide 8 by 2 to get 4.
\frac{1}{8}-\frac{4\left(-1\right)}{2}
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\frac{1}{8}-\frac{-4}{2}
Multiply 4 and -1 to get -4.
\frac{1}{8}-\left(-2\right)
Divide -4 by 2 to get -2.
\frac{1}{8}+2
The opposite of -2 is 2.
\frac{1}{8}+\frac{16}{8}
Convert 2 to fraction \frac{16}{8}.
\frac{1+16}{8}
Since \frac{1}{8} and \frac{16}{8} have the same denominator, add them by adding their numerators.
\frac{17}{8}
Add 1 and 16 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}