Solve for h
h=\frac{k}{11m}-\frac{1}{55}
m\neq 0
Solve for k
k=\frac{m\left(55h+1\right)}{5}
m\neq 0
Share
Copied to clipboard
5m\times \frac{1}{5}+11h\times 5m=5k
Multiply both sides of the equation by 5m, the least common multiple of 5,m.
m+11h\times 5m=5k
Multiply 5 and \frac{1}{5} to get 1.
m+55hm=5k
Multiply 11 and 5 to get 55.
55hm=5k-m
Subtract m from both sides.
55mh=5k-m
The equation is in standard form.
\frac{55mh}{55m}=\frac{5k-m}{55m}
Divide both sides by 55m.
h=\frac{5k-m}{55m}
Dividing by 55m undoes the multiplication by 55m.
h=\frac{k}{11m}-\frac{1}{55}
Divide 5k-m by 55m.
5m\times \frac{1}{5}+11h\times 5m=5k
Multiply both sides of the equation by 5m, the least common multiple of 5,m.
m+11h\times 5m=5k
Multiply 5 and \frac{1}{5} to get 1.
m+55hm=5k
Multiply 11 and 5 to get 55.
5k=m+55hm
Swap sides so that all variable terms are on the left hand side.
5k=55hm+m
The equation is in standard form.
\frac{5k}{5}=\frac{55hm+m}{5}
Divide both sides by 5.
k=\frac{55hm+m}{5}
Dividing by 5 undoes the multiplication by 5.
k=11hm+\frac{m}{5}
Divide m+55mh by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}