Evaluate
\frac{11\sqrt{5}}{4}+\frac{1}{5}\approx 6.349186938
Factor
\frac{55 \sqrt{5} + 4}{20} = 6.349186938124422
Share
Copied to clipboard
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\left(\sqrt{48}-\sqrt{\frac{1}{3}}\right)}{\sqrt{12}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\left(4\sqrt{3}-\sqrt{\frac{1}{3}}\right)}{\sqrt{12}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\left(4\sqrt{3}-\frac{\sqrt{1}}{\sqrt{3}}\right)}{\sqrt{12}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\left(4\sqrt{3}-\frac{1}{\sqrt{3}}\right)}{\sqrt{12}}
Calculate the square root of 1 and get 1.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\left(4\sqrt{3}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)}{\sqrt{12}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\left(4\sqrt{3}-\frac{\sqrt{3}}{3}\right)}{\sqrt{12}}
The square of \sqrt{3} is 3.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\left(\frac{3\times 4\sqrt{3}}{3}-\frac{\sqrt{3}}{3}\right)}{\sqrt{12}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{3} times \frac{3}{3}.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\times \frac{3\times 4\sqrt{3}-\sqrt{3}}{3}}{\sqrt{12}}
Since \frac{3\times 4\sqrt{3}}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\times \frac{12\sqrt{3}-\sqrt{3}}{3}}{\sqrt{12}}
Do the multiplications in 3\times 4\sqrt{3}-\sqrt{3}.
\frac{1}{5}+\frac{\frac{3\sqrt{5}}{2}\times \frac{11\sqrt{3}}{3}}{\sqrt{12}}
Do the calculations in 12\sqrt{3}-\sqrt{3}.
\frac{1}{5}+\frac{\frac{3\sqrt{5}\times 11\sqrt{3}}{2\times 3}}{\sqrt{12}}
Multiply \frac{3\sqrt{5}}{2} times \frac{11\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}+\frac{\frac{11\sqrt{3}\sqrt{5}}{2}}{\sqrt{12}}
Cancel out 3 in both numerator and denominator.
\frac{1}{5}+\frac{\frac{11\sqrt{3}\sqrt{5}}{2}}{2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{1}{5}+\frac{11\sqrt{3}\sqrt{5}}{2\times 2\sqrt{3}}
Express \frac{\frac{11\sqrt{3}\sqrt{5}}{2}}{2\sqrt{3}} as a single fraction.
\frac{1}{5}+\frac{11\sqrt{5}}{2\times 2}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{1}{5}+\frac{11\sqrt{5}}{4}
Multiply 2 and 2 to get 4.
\frac{4}{20}+\frac{5\times 11\sqrt{5}}{20}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 4 is 20. Multiply \frac{1}{5} times \frac{4}{4}. Multiply \frac{11\sqrt{5}}{4} times \frac{5}{5}.
\frac{4+5\times 11\sqrt{5}}{20}
Since \frac{4}{20} and \frac{5\times 11\sqrt{5}}{20} have the same denominator, add them by adding their numerators.
\frac{4+55\sqrt{5}}{20}
Do the multiplications in 4+5\times 11\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}