Solve for x
x=\frac{9000000\ln(48)}{959}\approx 36330.35359559
Solve for x (complex solution)
x=-\frac{i\times 18000000\pi n_{1}}{959}+\frac{9000000\ln(48)}{959}
n_{1}\in \mathrm{Z}
Graph
Quiz
Algebra
5 problems similar to:
\frac { 1 } { 48 } = e ^ { - \frac { 0.035 } { 45 } \times 0.137 x }
Share
Copied to clipboard
\frac{1}{48}=e^{\left(-\frac{35}{45000}\right)\times 0.137x}
Expand \frac{0.035}{45} by multiplying both numerator and the denominator by 1000.
\frac{1}{48}=e^{-\frac{7}{9000}\times 0.137x}
Reduce the fraction \frac{35}{45000} to lowest terms by extracting and canceling out 5.
\frac{1}{48}=e^{-\frac{959}{9000000}x}
Multiply -\frac{7}{9000} and 0.137 to get -\frac{959}{9000000}.
e^{-\frac{959}{9000000}x}=\frac{1}{48}
Swap sides so that all variable terms are on the left hand side.
\log(e^{-\frac{959}{9000000}x})=\log(\frac{1}{48})
Take the logarithm of both sides of the equation.
-\frac{959}{9000000}x\log(e)=\log(\frac{1}{48})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-\frac{959}{9000000}x=\frac{\log(\frac{1}{48})}{\log(e)}
Divide both sides by \log(e).
-\frac{959}{9000000}x=\log_{e}\left(\frac{1}{48}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\frac{\ln(48)}{-\frac{959}{9000000}}
Divide both sides of the equation by -\frac{959}{9000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}