Solve for a
a=-\frac{-2bz+b-1}{2z+1}
|z|\neq \frac{1}{2}
Solve for b
b=-\frac{1-a-2az}{2z-1}
|z|\neq \frac{1}{2}
Share
Copied to clipboard
1=\left(2z+1\right)a-\left(2z-1\right)b
Multiply both sides of the equation by \left(2z-1\right)\left(2z+1\right), the least common multiple of 4z^{2}-1,2z-1,2z+1.
1=2za+a-\left(2z-1\right)b
Use the distributive property to multiply 2z+1 by a.
1=2za+a-\left(2zb-b\right)
Use the distributive property to multiply 2z-1 by b.
1=2za+a-2zb+b
To find the opposite of 2zb-b, find the opposite of each term.
2za+a-2zb+b=1
Swap sides so that all variable terms are on the left hand side.
2za+a+b=1+2zb
Add 2zb to both sides.
2za+a=1+2zb-b
Subtract b from both sides.
\left(2z+1\right)a=1+2zb-b
Combine all terms containing a.
\left(2z+1\right)a=2bz-b+1
The equation is in standard form.
\frac{\left(2z+1\right)a}{2z+1}=\frac{2bz-b+1}{2z+1}
Divide both sides by 2z+1.
a=\frac{2bz-b+1}{2z+1}
Dividing by 2z+1 undoes the multiplication by 2z+1.
1=\left(2z+1\right)a-\left(2z-1\right)b
Multiply both sides of the equation by \left(2z-1\right)\left(2z+1\right), the least common multiple of 4z^{2}-1,2z-1,2z+1.
1=2za+a-\left(2z-1\right)b
Use the distributive property to multiply 2z+1 by a.
1=2za+a-\left(2zb-b\right)
Use the distributive property to multiply 2z-1 by b.
1=2za+a-2zb+b
To find the opposite of 2zb-b, find the opposite of each term.
2za+a-2zb+b=1
Swap sides so that all variable terms are on the left hand side.
a-2zb+b=1-2za
Subtract 2za from both sides.
-2zb+b=1-2za-a
Subtract a from both sides.
\left(-2z+1\right)b=1-2za-a
Combine all terms containing b.
\left(1-2z\right)b=1-a-2az
The equation is in standard form.
\frac{\left(1-2z\right)b}{1-2z}=\frac{1-a-2az}{1-2z}
Divide both sides by -2z+1.
b=\frac{1-a-2az}{1-2z}
Dividing by -2z+1 undoes the multiplication by -2z+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}