Solve for x
x=-\frac{y}{2\left(1-8y\right)}
y\neq 0\text{ and }y\neq \frac{1}{8}
Solve for y
y=-\frac{2x}{1-16x}
x\neq 0\text{ and }x\neq \frac{1}{16}
Graph
Share
Copied to clipboard
y+2x=16xy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4xy, the least common multiple of 4x,2y.
y+2x-16xy=0
Subtract 16xy from both sides.
2x-16xy=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
\left(2-16y\right)x=-y
Combine all terms containing x.
\frac{\left(2-16y\right)x}{2-16y}=-\frac{y}{2-16y}
Divide both sides by -16y+2.
x=-\frac{y}{2-16y}
Dividing by -16y+2 undoes the multiplication by -16y+2.
x=-\frac{y}{2\left(1-8y\right)}
Divide -y by -16y+2.
x=-\frac{y}{2\left(1-8y\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
y+2x=16xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4xy, the least common multiple of 4x,2y.
y+2x-16xy=0
Subtract 16xy from both sides.
y-16xy=-2x
Subtract 2x from both sides. Anything subtracted from zero gives its negation.
\left(1-16x\right)y=-2x
Combine all terms containing y.
\frac{\left(1-16x\right)y}{1-16x}=-\frac{2x}{1-16x}
Divide both sides by 1-16x.
y=-\frac{2x}{1-16x}
Dividing by 1-16x undoes the multiplication by 1-16x.
y=-\frac{2x}{1-16x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}