Solve for a (complex solution)
a\in \mathrm{C}\setminus -1,1,-i,i
Solve for a
a\in \mathrm{R}\setminus -1,1
Share
Copied to clipboard
6\left(a-1\right)\left(a+i\right)\left(a-i\right)-3\left(a+1\right)\left(a+i\right)\left(a-i\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Variable a cannot be equal to any of the values -1,-i,i,1 since division by zero is not defined. Multiply both sides of the equation by 24\left(a-1\right)\left(a+1\right)\left(a-i\right)\left(a+i\right), the least common multiple of 4a+4,8a-8,12a^{2}+12,24\left(a^{4}-1\right).
\left(6a-6\right)\left(a+i\right)\left(a-i\right)-3\left(a+1\right)\left(a+i\right)\left(a-i\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply 6 by a-1.
\left(6a^{2}+\left(-6+6i\right)a-6i\right)\left(a-i\right)-3\left(a+1\right)\left(a+i\right)\left(a-i\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply 6a-6 by a+i and combine like terms.
6a^{3}-6a^{2}+6a-6-3\left(a+1\right)\left(a+i\right)\left(a-i\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply 6a^{2}+\left(-6+6i\right)a-6i by a-i and combine like terms.
6a^{3}-6a^{2}+6a-6+\left(-3a-3\right)\left(a+i\right)\left(a-i\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply -3 by a+1.
6a^{3}-6a^{2}+6a-6+\left(-3a^{2}+\left(-3-3i\right)a-3i\right)\left(a-i\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply -3a-3 by a+i and combine like terms.
6a^{3}-6a^{2}+6a-6-3a^{3}-3a^{2}-3a-3-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply -3a^{2}+\left(-3-3i\right)a-3i by a-i and combine like terms.
3a^{3}-6a^{2}+6a-6-3a^{2}-3a-3-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Combine 6a^{3} and -3a^{3} to get 3a^{3}.
3a^{3}-9a^{2}+6a-6-3a-3-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Combine -6a^{2} and -3a^{2} to get -9a^{2}.
3a^{3}-9a^{2}+3a-6-3-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Combine 6a and -3a to get 3a.
3a^{3}-9a^{2}+3a-9-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Subtract 3 from -6 to get -9.
3a^{3}-9a^{2}+3a-9-2a^{2}+2=3a^{3}-11a^{2}+3a-7
To find the opposite of 2a^{2}-2, find the opposite of each term.
3a^{3}-11a^{2}+3a-9+2=3a^{3}-11a^{2}+3a-7
Combine -9a^{2} and -2a^{2} to get -11a^{2}.
3a^{3}-11a^{2}+3a-7=3a^{3}-11a^{2}+3a-7
Add -9 and 2 to get -7.
3a^{3}-11a^{2}+3a-7-3a^{3}=-11a^{2}+3a-7
Subtract 3a^{3} from both sides.
-11a^{2}+3a-7=-11a^{2}+3a-7
Combine 3a^{3} and -3a^{3} to get 0.
-11a^{2}+3a-7+11a^{2}=3a-7
Add 11a^{2} to both sides.
3a-7=3a-7
Combine -11a^{2} and 11a^{2} to get 0.
3a-7-3a=-7
Subtract 3a from both sides.
-7=-7
Combine 3a and -3a to get 0.
\text{true}
Compare -7 and -7.
a\in \mathrm{C}
This is true for any a.
a\in \mathrm{C}\setminus -i,i,-1,1
Variable a cannot be equal to any of the values -i,i,-1,1.
6\left(a-1\right)\left(a^{2}+1\right)-3\left(a+1\right)\left(a^{2}+1\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Variable a cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 24\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right), the least common multiple of 4a+4,8a-8,12a^{2}+12,24\left(a^{4}-1\right).
\left(6a-6\right)\left(a^{2}+1\right)-3\left(a+1\right)\left(a^{2}+1\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply 6 by a-1.
6a^{3}+6a-6a^{2}-6-3\left(a+1\right)\left(a^{2}+1\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply 6a-6 by a^{2}+1.
6a^{3}+6a-6a^{2}-6+\left(-3a-3\right)\left(a^{2}+1\right)-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply -3 by a+1.
6a^{3}+6a-6a^{2}-6-3a^{3}-3a-3a^{2}-3-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Use the distributive property to multiply -3a-3 by a^{2}+1.
3a^{3}+6a-6a^{2}-6-3a-3a^{2}-3-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Combine 6a^{3} and -3a^{3} to get 3a^{3}.
3a^{3}+3a-6a^{2}-6-3a^{2}-3-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Combine 6a and -3a to get 3a.
3a^{3}+3a-9a^{2}-6-3-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Combine -6a^{2} and -3a^{2} to get -9a^{2}.
3a^{3}+3a-9a^{2}-9-\left(2a^{2}-2\right)=3a^{3}-11a^{2}+3a-7
Subtract 3 from -6 to get -9.
3a^{3}+3a-9a^{2}-9-2a^{2}+2=3a^{3}-11a^{2}+3a-7
To find the opposite of 2a^{2}-2, find the opposite of each term.
3a^{3}+3a-11a^{2}-9+2=3a^{3}-11a^{2}+3a-7
Combine -9a^{2} and -2a^{2} to get -11a^{2}.
3a^{3}+3a-11a^{2}-7=3a^{3}-11a^{2}+3a-7
Add -9 and 2 to get -7.
3a^{3}+3a-11a^{2}-7-3a^{3}=-11a^{2}+3a-7
Subtract 3a^{3} from both sides.
3a-11a^{2}-7=-11a^{2}+3a-7
Combine 3a^{3} and -3a^{3} to get 0.
3a-11a^{2}-7+11a^{2}=3a-7
Add 11a^{2} to both sides.
3a-7=3a-7
Combine -11a^{2} and 11a^{2} to get 0.
3a-7-3a=-7
Subtract 3a from both sides.
-7=-7
Combine 3a and -3a to get 0.
\text{true}
Compare -7 and -7.
a\in \mathrm{R}
This is true for any a.
a\in \mathrm{R}\setminus -1,1
Variable a cannot be equal to any of the values -1,1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}