Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4+\sqrt{5}}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}+\frac{1}{4+\sqrt{5}}
Rationalize the denominator of \frac{1}{4-\sqrt{5}} by multiplying numerator and denominator by 4+\sqrt{5}.
\frac{4+\sqrt{5}}{4^{2}-\left(\sqrt{5}\right)^{2}}+\frac{1}{4+\sqrt{5}}
Consider \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4+\sqrt{5}}{16-5}+\frac{1}{4+\sqrt{5}}
Square 4. Square \sqrt{5}.
\frac{4+\sqrt{5}}{11}+\frac{1}{4+\sqrt{5}}
Subtract 5 from 16 to get 11.
\frac{4+\sqrt{5}}{11}+\frac{4-\sqrt{5}}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
Rationalize the denominator of \frac{1}{4+\sqrt{5}} by multiplying numerator and denominator by 4-\sqrt{5}.
\frac{4+\sqrt{5}}{11}+\frac{4-\sqrt{5}}{4^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4+\sqrt{5}}{11}+\frac{4-\sqrt{5}}{16-5}
Square 4. Square \sqrt{5}.
\frac{4+\sqrt{5}}{11}+\frac{4-\sqrt{5}}{11}
Subtract 5 from 16 to get 11.
\frac{4+\sqrt{5}+4-\sqrt{5}}{11}
Since \frac{4+\sqrt{5}}{11} and \frac{4-\sqrt{5}}{11} have the same denominator, add them by adding their numerators.
\frac{8}{11}
Do the calculations in 4+\sqrt{5}+4-\sqrt{5}.