Solve for x
x>-\frac{28}{9}
Graph
Share
Copied to clipboard
\frac{1}{4}x-\frac{1}{3}-x<2
Subtract x from both sides.
-\frac{3}{4}x-\frac{1}{3}<2
Combine \frac{1}{4}x and -x to get -\frac{3}{4}x.
-\frac{3}{4}x<2+\frac{1}{3}
Add \frac{1}{3} to both sides.
-\frac{3}{4}x<\frac{6}{3}+\frac{1}{3}
Convert 2 to fraction \frac{6}{3}.
-\frac{3}{4}x<\frac{6+1}{3}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
-\frac{3}{4}x<\frac{7}{3}
Add 6 and 1 to get 7.
x>\frac{7}{3}\left(-\frac{4}{3}\right)
Multiply both sides by -\frac{4}{3}, the reciprocal of -\frac{3}{4}. Since -\frac{3}{4} is negative, the inequality direction is changed.
x>\frac{7\left(-4\right)}{3\times 3}
Multiply \frac{7}{3} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
x>\frac{-28}{9}
Do the multiplications in the fraction \frac{7\left(-4\right)}{3\times 3}.
x>-\frac{28}{9}
Fraction \frac{-28}{9} can be rewritten as -\frac{28}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}