Solve for x
x=2\sqrt{11}+8\approx 14.633249581
x=8-2\sqrt{11}\approx 1.366750419
Graph
Share
Copied to clipboard
\frac{1}{4}x^{2}-4x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{1}{4}\times 5}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, -4 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{1}{4}\times 5}}{2\times \frac{1}{4}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-5}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
x=\frac{-\left(-4\right)±\sqrt{11}}{2\times \frac{1}{4}}
Add 16 to -5.
x=\frac{4±\sqrt{11}}{2\times \frac{1}{4}}
The opposite of -4 is 4.
x=\frac{4±\sqrt{11}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
x=\frac{\sqrt{11}+4}{\frac{1}{2}}
Now solve the equation x=\frac{4±\sqrt{11}}{\frac{1}{2}} when ± is plus. Add 4 to \sqrt{11}.
x=2\sqrt{11}+8
Divide 4+\sqrt{11} by \frac{1}{2} by multiplying 4+\sqrt{11} by the reciprocal of \frac{1}{2}.
x=\frac{4-\sqrt{11}}{\frac{1}{2}}
Now solve the equation x=\frac{4±\sqrt{11}}{\frac{1}{2}} when ± is minus. Subtract \sqrt{11} from 4.
x=8-2\sqrt{11}
Divide 4-\sqrt{11} by \frac{1}{2} by multiplying 4-\sqrt{11} by the reciprocal of \frac{1}{2}.
x=2\sqrt{11}+8 x=8-2\sqrt{11}
The equation is now solved.
\frac{1}{4}x^{2}-4x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{4}x^{2}-4x+5-5=-5
Subtract 5 from both sides of the equation.
\frac{1}{4}x^{2}-4x=-5
Subtracting 5 from itself leaves 0.
\frac{\frac{1}{4}x^{2}-4x}{\frac{1}{4}}=-\frac{5}{\frac{1}{4}}
Multiply both sides by 4.
x^{2}+\left(-\frac{4}{\frac{1}{4}}\right)x=-\frac{5}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
x^{2}-16x=-\frac{5}{\frac{1}{4}}
Divide -4 by \frac{1}{4} by multiplying -4 by the reciprocal of \frac{1}{4}.
x^{2}-16x=-20
Divide -5 by \frac{1}{4} by multiplying -5 by the reciprocal of \frac{1}{4}.
x^{2}-16x+\left(-8\right)^{2}=-20+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-20+64
Square -8.
x^{2}-16x+64=44
Add -20 to 64.
\left(x-8\right)^{2}=44
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{44}
Take the square root of both sides of the equation.
x-8=2\sqrt{11} x-8=-2\sqrt{11}
Simplify.
x=2\sqrt{11}+8 x=8-2\sqrt{11}
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}