Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{4}x^{2}-\frac{1}{2}x-2=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{1}{4}\left(-2\right)}}{\frac{1}{4}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{4} for a, -\frac{1}{2} for b, and -2 for c in the quadratic formula.
x=\frac{\frac{1}{2}±\frac{3}{2}}{\frac{1}{2}}
Do the calculations.
x=4 x=-2
Solve the equation x=\frac{\frac{1}{2}±\frac{3}{2}}{\frac{1}{2}} when ± is plus and when ± is minus.
\frac{1}{4}\left(x-4\right)\left(x+2\right)\geq 0
Rewrite the inequality by using the obtained solutions.
x-4\leq 0 x+2\leq 0
For the product to be ≥0, x-4 and x+2 have to be both ≤0 or both ≥0. Consider the case when x-4 and x+2 are both ≤0.
x\leq -2
The solution satisfying both inequalities is x\leq -2.
x+2\geq 0 x-4\geq 0
Consider the case when x-4 and x+2 are both ≥0.
x\geq 4
The solution satisfying both inequalities is x\geq 4.
x\leq -2\text{; }x\geq 4
The final solution is the union of the obtained solutions.