Solve for x
x=-\frac{8y}{3}+4
Solve for y
y=-\frac{3x}{8}+\frac{3}{2}
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 4 } x + \frac { 2 } { 3 } y = \frac { 3 } { 3 }
Share
Copied to clipboard
\frac{1}{4}x+\frac{2}{3}y=1
Divide 3 by 3 to get 1.
\frac{1}{4}x=1-\frac{2}{3}y
Subtract \frac{2}{3}y from both sides.
\frac{1}{4}x=-\frac{2y}{3}+1
The equation is in standard form.
\frac{\frac{1}{4}x}{\frac{1}{4}}=\frac{-\frac{2y}{3}+1}{\frac{1}{4}}
Multiply both sides by 4.
x=\frac{-\frac{2y}{3}+1}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
x=-\frac{8y}{3}+4
Divide 1-\frac{2y}{3} by \frac{1}{4} by multiplying 1-\frac{2y}{3} by the reciprocal of \frac{1}{4}.
\frac{1}{4}x+\frac{2}{3}y=1
Divide 3 by 3 to get 1.
\frac{2}{3}y=1-\frac{1}{4}x
Subtract \frac{1}{4}x from both sides.
\frac{2}{3}y=-\frac{x}{4}+1
The equation is in standard form.
\frac{\frac{2}{3}y}{\frac{2}{3}}=\frac{-\frac{x}{4}+1}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{x}{4}+1}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
y=-\frac{3x}{8}+\frac{3}{2}
Divide 1-\frac{x}{4} by \frac{2}{3} by multiplying 1-\frac{x}{4} by the reciprocal of \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}