Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{4}x+\frac{1}{5}=\frac{9}{8}\times 5x+\frac{9}{8}\times 11
Use the distributive property to multiply \frac{9}{8} by 5x+11.
\frac{1}{4}x+\frac{1}{5}=\frac{9\times 5}{8}x+\frac{9}{8}\times 11
Express \frac{9}{8}\times 5 as a single fraction.
\frac{1}{4}x+\frac{1}{5}=\frac{45}{8}x+\frac{9}{8}\times 11
Multiply 9 and 5 to get 45.
\frac{1}{4}x+\frac{1}{5}=\frac{45}{8}x+\frac{9\times 11}{8}
Express \frac{9}{8}\times 11 as a single fraction.
\frac{1}{4}x+\frac{1}{5}=\frac{45}{8}x+\frac{99}{8}
Multiply 9 and 11 to get 99.
\frac{1}{4}x+\frac{1}{5}-\frac{45}{8}x=\frac{99}{8}
Subtract \frac{45}{8}x from both sides.
-\frac{43}{8}x+\frac{1}{5}=\frac{99}{8}
Combine \frac{1}{4}x and -\frac{45}{8}x to get -\frac{43}{8}x.
-\frac{43}{8}x=\frac{99}{8}-\frac{1}{5}
Subtract \frac{1}{5} from both sides.
-\frac{43}{8}x=\frac{495}{40}-\frac{8}{40}
Least common multiple of 8 and 5 is 40. Convert \frac{99}{8} and \frac{1}{5} to fractions with denominator 40.
-\frac{43}{8}x=\frac{495-8}{40}
Since \frac{495}{40} and \frac{8}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{43}{8}x=\frac{487}{40}
Subtract 8 from 495 to get 487.
x=\frac{487}{40}\left(-\frac{8}{43}\right)
Multiply both sides by -\frac{8}{43}, the reciprocal of -\frac{43}{8}.
x=\frac{487\left(-8\right)}{40\times 43}
Multiply \frac{487}{40} times -\frac{8}{43} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-3896}{1720}
Do the multiplications in the fraction \frac{487\left(-8\right)}{40\times 43}.
x=-\frac{487}{215}
Reduce the fraction \frac{-3896}{1720} to lowest terms by extracting and canceling out 8.