Skip to main content
Solve for v_2
Tick mark Image

Similar Problems from Web Search

Share

-\frac{1}{4}v_{2}^{2}=\frac{49}{2}-49
Combine \frac{1}{4}v_{2}^{2} and -\frac{1}{2}v_{2}^{2} to get -\frac{1}{4}v_{2}^{2}.
-\frac{1}{4}v_{2}^{2}=-\frac{49}{2}
Subtract 49 from \frac{49}{2} to get -\frac{49}{2}.
v_{2}^{2}=-\frac{49}{2}\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
v_{2}^{2}=98
Multiply -\frac{49}{2} and -4 to get 98.
v_{2}=7\sqrt{2} v_{2}=-7\sqrt{2}
Take the square root of both sides of the equation.
-\frac{1}{4}v_{2}^{2}=\frac{49}{2}-49
Combine \frac{1}{4}v_{2}^{2} and -\frac{1}{2}v_{2}^{2} to get -\frac{1}{4}v_{2}^{2}.
-\frac{1}{4}v_{2}^{2}=-\frac{49}{2}
Subtract 49 from \frac{49}{2} to get -\frac{49}{2}.
-\frac{1}{4}v_{2}^{2}+\frac{49}{2}=0
Add \frac{49}{2} to both sides.
v_{2}=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{4}\right)\times \frac{49}{2}}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, 0 for b, and \frac{49}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v_{2}=\frac{0±\sqrt{-4\left(-\frac{1}{4}\right)\times \frac{49}{2}}}{2\left(-\frac{1}{4}\right)}
Square 0.
v_{2}=\frac{0±\sqrt{\frac{49}{2}}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
v_{2}=\frac{0±\frac{7\sqrt{2}}{2}}{2\left(-\frac{1}{4}\right)}
Take the square root of \frac{49}{2}.
v_{2}=\frac{0±\frac{7\sqrt{2}}{2}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
v_{2}=-7\sqrt{2}
Now solve the equation v_{2}=\frac{0±\frac{7\sqrt{2}}{2}}{-\frac{1}{2}} when ± is plus.
v_{2}=7\sqrt{2}
Now solve the equation v_{2}=\frac{0±\frac{7\sqrt{2}}{2}}{-\frac{1}{2}} when ± is minus.
v_{2}=-7\sqrt{2} v_{2}=7\sqrt{2}
The equation is now solved.