Solve for v_2
v_{2}=7\sqrt{2}\approx 9.899494937
v_{2}=-7\sqrt{2}\approx -9.899494937
Share
Copied to clipboard
-\frac{1}{4}v_{2}^{2}=\frac{49}{2}-49
Combine \frac{1}{4}v_{2}^{2} and -\frac{1}{2}v_{2}^{2} to get -\frac{1}{4}v_{2}^{2}.
-\frac{1}{4}v_{2}^{2}=-\frac{49}{2}
Subtract 49 from \frac{49}{2} to get -\frac{49}{2}.
v_{2}^{2}=-\frac{49}{2}\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
v_{2}^{2}=98
Multiply -\frac{49}{2} and -4 to get 98.
v_{2}=7\sqrt{2} v_{2}=-7\sqrt{2}
Take the square root of both sides of the equation.
-\frac{1}{4}v_{2}^{2}=\frac{49}{2}-49
Combine \frac{1}{4}v_{2}^{2} and -\frac{1}{2}v_{2}^{2} to get -\frac{1}{4}v_{2}^{2}.
-\frac{1}{4}v_{2}^{2}=-\frac{49}{2}
Subtract 49 from \frac{49}{2} to get -\frac{49}{2}.
-\frac{1}{4}v_{2}^{2}+\frac{49}{2}=0
Add \frac{49}{2} to both sides.
v_{2}=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{4}\right)\times \frac{49}{2}}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, 0 for b, and \frac{49}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v_{2}=\frac{0±\sqrt{-4\left(-\frac{1}{4}\right)\times \frac{49}{2}}}{2\left(-\frac{1}{4}\right)}
Square 0.
v_{2}=\frac{0±\sqrt{\frac{49}{2}}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
v_{2}=\frac{0±\frac{7\sqrt{2}}{2}}{2\left(-\frac{1}{4}\right)}
Take the square root of \frac{49}{2}.
v_{2}=\frac{0±\frac{7\sqrt{2}}{2}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
v_{2}=-7\sqrt{2}
Now solve the equation v_{2}=\frac{0±\frac{7\sqrt{2}}{2}}{-\frac{1}{2}} when ± is plus.
v_{2}=7\sqrt{2}
Now solve the equation v_{2}=\frac{0±\frac{7\sqrt{2}}{2}}{-\frac{1}{2}} when ± is minus.
v_{2}=-7\sqrt{2} v_{2}=7\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}