Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}t^{2}-\frac{3}{2}t+\frac{9}{4}=\frac{5}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{4}t^{2}-\frac{3}{2}t+\frac{9}{4}-\frac{5}{4}=\frac{5}{4}-\frac{5}{4}
Subtract \frac{5}{4} from both sides of the equation.
\frac{1}{4}t^{2}-\frac{3}{2}t+\frac{9}{4}-\frac{5}{4}=0
Subtracting \frac{5}{4} from itself leaves 0.
\frac{1}{4}t^{2}-\frac{3}{2}t+1=0
Subtract \frac{5}{4} from \frac{9}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times \frac{1}{4}}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, -\frac{3}{2} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times \frac{1}{4}}}{2\times \frac{1}{4}}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-1}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{5}{4}}}{2\times \frac{1}{4}}
Add \frac{9}{4} to -1.
t=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{5}}{2}}{2\times \frac{1}{4}}
Take the square root of \frac{5}{4}.
t=\frac{\frac{3}{2}±\frac{\sqrt{5}}{2}}{2\times \frac{1}{4}}
The opposite of -\frac{3}{2} is \frac{3}{2}.
t=\frac{\frac{3}{2}±\frac{\sqrt{5}}{2}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
t=\frac{\sqrt{5}+3}{\frac{1}{2}\times 2}
Now solve the equation t=\frac{\frac{3}{2}±\frac{\sqrt{5}}{2}}{\frac{1}{2}} when ± is plus. Add \frac{3}{2} to \frac{\sqrt{5}}{2}.
t=\sqrt{5}+3
Divide \frac{3+\sqrt{5}}{2} by \frac{1}{2} by multiplying \frac{3+\sqrt{5}}{2} by the reciprocal of \frac{1}{2}.
t=\frac{3-\sqrt{5}}{\frac{1}{2}\times 2}
Now solve the equation t=\frac{\frac{3}{2}±\frac{\sqrt{5}}{2}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{5}}{2} from \frac{3}{2}.
t=3-\sqrt{5}
Divide \frac{3-\sqrt{5}}{2} by \frac{1}{2} by multiplying \frac{3-\sqrt{5}}{2} by the reciprocal of \frac{1}{2}.
t=\sqrt{5}+3 t=3-\sqrt{5}
The equation is now solved.
\frac{1}{4}t^{2}-\frac{3}{2}t+\frac{9}{4}=\frac{5}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{4}t^{2}-\frac{3}{2}t+\frac{9}{4}-\frac{9}{4}=\frac{5}{4}-\frac{9}{4}
Subtract \frac{9}{4} from both sides of the equation.
\frac{1}{4}t^{2}-\frac{3}{2}t=\frac{5}{4}-\frac{9}{4}
Subtracting \frac{9}{4} from itself leaves 0.
\frac{1}{4}t^{2}-\frac{3}{2}t=-1
Subtract \frac{9}{4} from \frac{5}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
\frac{\frac{1}{4}t^{2}-\frac{3}{2}t}{\frac{1}{4}}=-\frac{1}{\frac{1}{4}}
Multiply both sides by 4.
t^{2}+\left(-\frac{\frac{3}{2}}{\frac{1}{4}}\right)t=-\frac{1}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
t^{2}-6t=-\frac{1}{\frac{1}{4}}
Divide -\frac{3}{2} by \frac{1}{4} by multiplying -\frac{3}{2} by the reciprocal of \frac{1}{4}.
t^{2}-6t=-4
Divide -1 by \frac{1}{4} by multiplying -1 by the reciprocal of \frac{1}{4}.
t^{2}-6t+\left(-3\right)^{2}=-4+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-6t+9=-4+9
Square -3.
t^{2}-6t+9=5
Add -4 to 9.
\left(t-3\right)^{2}=5
Factor t^{2}-6t+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-3\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
t-3=\sqrt{5} t-3=-\sqrt{5}
Simplify.
t=\sqrt{5}+3 t=3-\sqrt{5}
Add 3 to both sides of the equation.