Skip to main content
Solve for n (complex solution)
Tick mark Image
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}n^{2}+\frac{3}{2}n=-\frac{3}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{4}n^{2}+\frac{3}{2}n-\left(-\frac{3}{4}\right)=-\frac{3}{4}-\left(-\frac{3}{4}\right)
Add \frac{3}{4} to both sides of the equation.
\frac{1}{4}n^{2}+\frac{3}{2}n-\left(-\frac{3}{4}\right)=0
Subtracting -\frac{3}{4} from itself leaves 0.
\frac{1}{4}n^{2}+\frac{3}{2}n+\frac{3}{4}=0
Subtract -\frac{3}{4} from 0.
n=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\times \frac{1}{4}\times \frac{3}{4}}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, \frac{3}{2} for b, and \frac{3}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\times \frac{1}{4}\times \frac{3}{4}}}{2\times \frac{1}{4}}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
n=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-\frac{3}{4}}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
n=\frac{-\frac{3}{2}±\sqrt{\frac{9-3}{4}}}{2\times \frac{1}{4}}
Multiply -1 times \frac{3}{4}.
n=\frac{-\frac{3}{2}±\sqrt{\frac{3}{2}}}{2\times \frac{1}{4}}
Add \frac{9}{4} to -\frac{3}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
n=\frac{-\frac{3}{2}±\frac{\sqrt{6}}{2}}{2\times \frac{1}{4}}
Take the square root of \frac{3}{2}.
n=\frac{-\frac{3}{2}±\frac{\sqrt{6}}{2}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
n=\frac{\sqrt{6}-3}{\frac{1}{2}\times 2}
Now solve the equation n=\frac{-\frac{3}{2}±\frac{\sqrt{6}}{2}}{\frac{1}{2}} when ± is plus. Add -\frac{3}{2} to \frac{\sqrt{6}}{2}.
n=\sqrt{6}-3
Divide \frac{-3+\sqrt{6}}{2} by \frac{1}{2} by multiplying \frac{-3+\sqrt{6}}{2} by the reciprocal of \frac{1}{2}.
n=\frac{-\sqrt{6}-3}{\frac{1}{2}\times 2}
Now solve the equation n=\frac{-\frac{3}{2}±\frac{\sqrt{6}}{2}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{6}}{2} from -\frac{3}{2}.
n=-\sqrt{6}-3
Divide \frac{-3-\sqrt{6}}{2} by \frac{1}{2} by multiplying \frac{-3-\sqrt{6}}{2} by the reciprocal of \frac{1}{2}.
n=\sqrt{6}-3 n=-\sqrt{6}-3
The equation is now solved.
\frac{1}{4}n^{2}+\frac{3}{2}n=-\frac{3}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{4}n^{2}+\frac{3}{2}n}{\frac{1}{4}}=-\frac{\frac{3}{4}}{\frac{1}{4}}
Multiply both sides by 4.
n^{2}+\frac{\frac{3}{2}}{\frac{1}{4}}n=-\frac{\frac{3}{4}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
n^{2}+6n=-\frac{\frac{3}{4}}{\frac{1}{4}}
Divide \frac{3}{2} by \frac{1}{4} by multiplying \frac{3}{2} by the reciprocal of \frac{1}{4}.
n^{2}+6n=-3
Divide -\frac{3}{4} by \frac{1}{4} by multiplying -\frac{3}{4} by the reciprocal of \frac{1}{4}.
n^{2}+6n+3^{2}=-3+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+6n+9=-3+9
Square 3.
n^{2}+6n+9=6
Add -3 to 9.
\left(n+3\right)^{2}=6
Factor n^{2}+6n+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+3\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
n+3=\sqrt{6} n+3=-\sqrt{6}
Simplify.
n=\sqrt{6}-3 n=-\sqrt{6}-3
Subtract 3 from both sides of the equation.
\frac{1}{4}n^{2}+\frac{3}{2}n=-\frac{3}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{4}n^{2}+\frac{3}{2}n-\left(-\frac{3}{4}\right)=-\frac{3}{4}-\left(-\frac{3}{4}\right)
Add \frac{3}{4} to both sides of the equation.
\frac{1}{4}n^{2}+\frac{3}{2}n-\left(-\frac{3}{4}\right)=0
Subtracting -\frac{3}{4} from itself leaves 0.
\frac{1}{4}n^{2}+\frac{3}{2}n+\frac{3}{4}=0
Subtract -\frac{3}{4} from 0.
n=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\times \frac{1}{4}\times \frac{3}{4}}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, \frac{3}{2} for b, and \frac{3}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\times \frac{1}{4}\times \frac{3}{4}}}{2\times \frac{1}{4}}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
n=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-\frac{3}{4}}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
n=\frac{-\frac{3}{2}±\sqrt{\frac{9-3}{4}}}{2\times \frac{1}{4}}
Multiply -1 times \frac{3}{4}.
n=\frac{-\frac{3}{2}±\sqrt{\frac{3}{2}}}{2\times \frac{1}{4}}
Add \frac{9}{4} to -\frac{3}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
n=\frac{-\frac{3}{2}±\frac{\sqrt{6}}{2}}{2\times \frac{1}{4}}
Take the square root of \frac{3}{2}.
n=\frac{-\frac{3}{2}±\frac{\sqrt{6}}{2}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
n=\frac{\sqrt{6}-3}{\frac{1}{2}\times 2}
Now solve the equation n=\frac{-\frac{3}{2}±\frac{\sqrt{6}}{2}}{\frac{1}{2}} when ± is plus. Add -\frac{3}{2} to \frac{\sqrt{6}}{2}.
n=\sqrt{6}-3
Divide \frac{-3+\sqrt{6}}{2} by \frac{1}{2} by multiplying \frac{-3+\sqrt{6}}{2} by the reciprocal of \frac{1}{2}.
n=\frac{-\sqrt{6}-3}{\frac{1}{2}\times 2}
Now solve the equation n=\frac{-\frac{3}{2}±\frac{\sqrt{6}}{2}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{6}}{2} from -\frac{3}{2}.
n=-\sqrt{6}-3
Divide \frac{-3-\sqrt{6}}{2} by \frac{1}{2} by multiplying \frac{-3-\sqrt{6}}{2} by the reciprocal of \frac{1}{2}.
n=\sqrt{6}-3 n=-\sqrt{6}-3
The equation is now solved.
\frac{1}{4}n^{2}+\frac{3}{2}n=-\frac{3}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{4}n^{2}+\frac{3}{2}n}{\frac{1}{4}}=-\frac{\frac{3}{4}}{\frac{1}{4}}
Multiply both sides by 4.
n^{2}+\frac{\frac{3}{2}}{\frac{1}{4}}n=-\frac{\frac{3}{4}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
n^{2}+6n=-\frac{\frac{3}{4}}{\frac{1}{4}}
Divide \frac{3}{2} by \frac{1}{4} by multiplying \frac{3}{2} by the reciprocal of \frac{1}{4}.
n^{2}+6n=-3
Divide -\frac{3}{4} by \frac{1}{4} by multiplying -\frac{3}{4} by the reciprocal of \frac{1}{4}.
n^{2}+6n+3^{2}=-3+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+6n+9=-3+9
Square 3.
n^{2}+6n+9=6
Add -3 to 9.
\left(n+3\right)^{2}=6
Factor n^{2}+6n+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+3\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
n+3=\sqrt{6} n+3=-\sqrt{6}
Simplify.
n=\sqrt{6}-3 n=-\sqrt{6}-3
Subtract 3 from both sides of the equation.