Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}\left(n-1\right)^{2}+\frac{2}{3}\left(n-1\right)+3\right)
Add \frac{2}{3} and 3 to get \frac{11}{3}.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}\left(n^{2}-2n+1\right)+\frac{2}{3}\left(n-1\right)+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-1\right)^{2}.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}-\frac{1}{2}n+\frac{1}{4}+\frac{2}{3}\left(n-1\right)+3\right)
Use the distributive property to multiply \frac{1}{4} by n^{2}-2n+1.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}-\frac{1}{2}n+\frac{1}{4}+\frac{2}{3}n-\frac{2}{3}+3\right)
Use the distributive property to multiply \frac{2}{3} by n-1.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n+\frac{1}{4}-\frac{2}{3}+3\right)
Combine -\frac{1}{2}n and \frac{2}{3}n to get \frac{1}{6}n.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n-\frac{5}{12}+3\right)
Subtract \frac{2}{3} from \frac{1}{4} to get -\frac{5}{12}.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n+\frac{31}{12}\right)
Add -\frac{5}{12} and 3 to get \frac{31}{12}.
\frac{1}{4}n^{2}+\frac{11}{3}-\frac{1}{4}n^{2}-\frac{1}{6}n-\frac{31}{12}
To find the opposite of \frac{1}{4}n^{2}+\frac{1}{6}n+\frac{31}{12}, find the opposite of each term.
\frac{11}{3}-\frac{1}{6}n-\frac{31}{12}
Combine \frac{1}{4}n^{2} and -\frac{1}{4}n^{2} to get 0.
\frac{13}{12}-\frac{1}{6}n
Subtract \frac{31}{12} from \frac{11}{3} to get \frac{13}{12}.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}\left(n-1\right)^{2}+\frac{2}{3}\left(n-1\right)+3\right)
Add \frac{2}{3} and 3 to get \frac{11}{3}.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}\left(n^{2}-2n+1\right)+\frac{2}{3}\left(n-1\right)+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-1\right)^{2}.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}-\frac{1}{2}n+\frac{1}{4}+\frac{2}{3}\left(n-1\right)+3\right)
Use the distributive property to multiply \frac{1}{4} by n^{2}-2n+1.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}-\frac{1}{2}n+\frac{1}{4}+\frac{2}{3}n-\frac{2}{3}+3\right)
Use the distributive property to multiply \frac{2}{3} by n-1.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n+\frac{1}{4}-\frac{2}{3}+3\right)
Combine -\frac{1}{2}n and \frac{2}{3}n to get \frac{1}{6}n.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n-\frac{5}{12}+3\right)
Subtract \frac{2}{3} from \frac{1}{4} to get -\frac{5}{12}.
\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n+\frac{31}{12}\right)
Add -\frac{5}{12} and 3 to get \frac{31}{12}.
\frac{1}{4}n^{2}+\frac{11}{3}-\frac{1}{4}n^{2}-\frac{1}{6}n-\frac{31}{12}
To find the opposite of \frac{1}{4}n^{2}+\frac{1}{6}n+\frac{31}{12}, find the opposite of each term.
\frac{11}{3}-\frac{1}{6}n-\frac{31}{12}
Combine \frac{1}{4}n^{2} and -\frac{1}{4}n^{2} to get 0.
\frac{13}{12}-\frac{1}{6}n
Subtract \frac{31}{12} from \frac{11}{3} to get \frac{13}{12}.