Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

1k^{2}-4=4\left(\frac{k}{2}-1\right)\left(k-2\right)
Multiply both sides of the equation by 4, the least common multiple of 4,2.
1k^{2}-4=\left(4\times \frac{k}{2}-4\right)\left(k-2\right)
Use the distributive property to multiply 4 by \frac{k}{2}-1.
1k^{2}-4=\left(2k-4\right)\left(k-2\right)
Cancel out 2, the greatest common factor in 4 and 2.
1k^{2}-4=2k^{2}-8k+8
Use the distributive property to multiply 2k-4 by k-2 and combine like terms.
1k^{2}-4-2k^{2}=-8k+8
Subtract 2k^{2} from both sides.
-k^{2}-4=-8k+8
Combine 1k^{2} and -2k^{2} to get -k^{2}.
-k^{2}-4+8k=8
Add 8k to both sides.
-k^{2}-4+8k-8=0
Subtract 8 from both sides.
-k^{2}-12+8k=0
Subtract 8 from -4 to get -12.
-k^{2}+8k-12=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-\left(-12\right)=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -k^{2}+ak+bk-12. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=6 b=2
The solution is the pair that gives sum 8.
\left(-k^{2}+6k\right)+\left(2k-12\right)
Rewrite -k^{2}+8k-12 as \left(-k^{2}+6k\right)+\left(2k-12\right).
-k\left(k-6\right)+2\left(k-6\right)
Factor out -k in the first and 2 in the second group.
\left(k-6\right)\left(-k+2\right)
Factor out common term k-6 by using distributive property.
k=6 k=2
To find equation solutions, solve k-6=0 and -k+2=0.
1k^{2}-4=4\left(\frac{k}{2}-1\right)\left(k-2\right)
Multiply both sides of the equation by 4, the least common multiple of 4,2.
1k^{2}-4=\left(4\times \frac{k}{2}-4\right)\left(k-2\right)
Use the distributive property to multiply 4 by \frac{k}{2}-1.
1k^{2}-4=\left(2k-4\right)\left(k-2\right)
Cancel out 2, the greatest common factor in 4 and 2.
1k^{2}-4=2k^{2}-8k+8
Use the distributive property to multiply 2k-4 by k-2 and combine like terms.
1k^{2}-4-2k^{2}=-8k+8
Subtract 2k^{2} from both sides.
-k^{2}-4=-8k+8
Combine 1k^{2} and -2k^{2} to get -k^{2}.
-k^{2}-4+8k=8
Add 8k to both sides.
-k^{2}-4+8k-8=0
Subtract 8 from both sides.
-k^{2}-12+8k=0
Subtract 8 from -4 to get -12.
-k^{2}+8k-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-8±\sqrt{64-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Square 8.
k=\frac{-8±\sqrt{64+4\left(-12\right)}}{2\left(-1\right)}
Multiply -4 times -1.
k=\frac{-8±\sqrt{64-48}}{2\left(-1\right)}
Multiply 4 times -12.
k=\frac{-8±\sqrt{16}}{2\left(-1\right)}
Add 64 to -48.
k=\frac{-8±4}{2\left(-1\right)}
Take the square root of 16.
k=\frac{-8±4}{-2}
Multiply 2 times -1.
k=-\frac{4}{-2}
Now solve the equation k=\frac{-8±4}{-2} when ± is plus. Add -8 to 4.
k=2
Divide -4 by -2.
k=-\frac{12}{-2}
Now solve the equation k=\frac{-8±4}{-2} when ± is minus. Subtract 4 from -8.
k=6
Divide -12 by -2.
k=2 k=6
The equation is now solved.
1k^{2}-4=4\left(\frac{k}{2}-1\right)\left(k-2\right)
Multiply both sides of the equation by 4, the least common multiple of 4,2.
1k^{2}-4=\left(4\times \frac{k}{2}-4\right)\left(k-2\right)
Use the distributive property to multiply 4 by \frac{k}{2}-1.
1k^{2}-4=\left(2k-4\right)\left(k-2\right)
Cancel out 2, the greatest common factor in 4 and 2.
1k^{2}-4=2k^{2}-8k+8
Use the distributive property to multiply 2k-4 by k-2 and combine like terms.
1k^{2}-4-2k^{2}=-8k+8
Subtract 2k^{2} from both sides.
-k^{2}-4=-8k+8
Combine 1k^{2} and -2k^{2} to get -k^{2}.
-k^{2}-4+8k=8
Add 8k to both sides.
-k^{2}+8k=8+4
Add 4 to both sides.
-k^{2}+8k=12
Add 8 and 4 to get 12.
\frac{-k^{2}+8k}{-1}=\frac{12}{-1}
Divide both sides by -1.
k^{2}+\frac{8}{-1}k=\frac{12}{-1}
Dividing by -1 undoes the multiplication by -1.
k^{2}-8k=\frac{12}{-1}
Divide 8 by -1.
k^{2}-8k=-12
Divide 12 by -1.
k^{2}-8k+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-8k+16=-12+16
Square -4.
k^{2}-8k+16=4
Add -12 to 16.
\left(k-4\right)^{2}=4
Factor k^{2}-8k+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-4\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
k-4=2 k-4=-2
Simplify.
k=6 k=2
Add 4 to both sides of the equation.