Solve for k
k=\frac{2\sqrt{30}}{3}-2\approx 1.651483717
k=-\frac{2\sqrt{30}}{3}-2\approx -5.651483717
Share
Copied to clipboard
\frac{1}{4}k^{2}+k-\frac{7}{3}=0
Multiply 2 and 0 to get 0.
k=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{4}\left(-\frac{7}{3}\right)}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, 1 for b, and -\frac{7}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-1±\sqrt{1-4\times \frac{1}{4}\left(-\frac{7}{3}\right)}}{2\times \frac{1}{4}}
Square 1.
k=\frac{-1±\sqrt{1-\left(-\frac{7}{3}\right)}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
k=\frac{-1±\sqrt{1+\frac{7}{3}}}{2\times \frac{1}{4}}
Multiply -1 times -\frac{7}{3}.
k=\frac{-1±\sqrt{\frac{10}{3}}}{2\times \frac{1}{4}}
Add 1 to \frac{7}{3}.
k=\frac{-1±\frac{\sqrt{30}}{3}}{2\times \frac{1}{4}}
Take the square root of \frac{10}{3}.
k=\frac{-1±\frac{\sqrt{30}}{3}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
k=\frac{\frac{\sqrt{30}}{3}-1}{\frac{1}{2}}
Now solve the equation k=\frac{-1±\frac{\sqrt{30}}{3}}{\frac{1}{2}} when ± is plus. Add -1 to \frac{\sqrt{30}}{3}.
k=\frac{2\sqrt{30}}{3}-2
Divide -1+\frac{\sqrt{30}}{3} by \frac{1}{2} by multiplying -1+\frac{\sqrt{30}}{3} by the reciprocal of \frac{1}{2}.
k=\frac{-\frac{\sqrt{30}}{3}-1}{\frac{1}{2}}
Now solve the equation k=\frac{-1±\frac{\sqrt{30}}{3}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{30}}{3} from -1.
k=-\frac{2\sqrt{30}}{3}-2
Divide -1-\frac{\sqrt{30}}{3} by \frac{1}{2} by multiplying -1-\frac{\sqrt{30}}{3} by the reciprocal of \frac{1}{2}.
k=\frac{2\sqrt{30}}{3}-2 k=-\frac{2\sqrt{30}}{3}-2
The equation is now solved.
\frac{1}{4}k^{2}+k-\frac{7}{3}=0
Multiply 2 and 0 to get 0.
\frac{1}{4}k^{2}+k=\frac{7}{3}
Add \frac{7}{3} to both sides. Anything plus zero gives itself.
\frac{\frac{1}{4}k^{2}+k}{\frac{1}{4}}=\frac{\frac{7}{3}}{\frac{1}{4}}
Multiply both sides by 4.
k^{2}+\frac{1}{\frac{1}{4}}k=\frac{\frac{7}{3}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
k^{2}+4k=\frac{\frac{7}{3}}{\frac{1}{4}}
Divide 1 by \frac{1}{4} by multiplying 1 by the reciprocal of \frac{1}{4}.
k^{2}+4k=\frac{28}{3}
Divide \frac{7}{3} by \frac{1}{4} by multiplying \frac{7}{3} by the reciprocal of \frac{1}{4}.
k^{2}+4k+2^{2}=\frac{28}{3}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+4k+4=\frac{28}{3}+4
Square 2.
k^{2}+4k+4=\frac{40}{3}
Add \frac{28}{3} to 4.
\left(k+2\right)^{2}=\frac{40}{3}
Factor k^{2}+4k+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+2\right)^{2}}=\sqrt{\frac{40}{3}}
Take the square root of both sides of the equation.
k+2=\frac{2\sqrt{30}}{3} k+2=-\frac{2\sqrt{30}}{3}
Simplify.
k=\frac{2\sqrt{30}}{3}-2 k=-\frac{2\sqrt{30}}{3}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}