Solve for x
x\in (0,\frac{26}{3}]
Graph
Share
Copied to clipboard
\frac{x}{4x}-\frac{3\times 2}{4x}\leq \frac{2}{3x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2x is 4x. Multiply \frac{1}{4} times \frac{x}{x}. Multiply \frac{3}{2x} times \frac{2}{2}.
\frac{x-3\times 2}{4x}\leq \frac{2}{3x}
Since \frac{x}{4x} and \frac{3\times 2}{4x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-6}{4x}\leq \frac{2}{3x}
Do the multiplications in x-3\times 2.
\frac{x-6}{4x}-\frac{2}{3x}\leq 0
Subtract \frac{2}{3x} from both sides.
\frac{3\left(x-6\right)}{12x}-\frac{2\times 4}{12x}\leq 0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4x and 3x is 12x. Multiply \frac{x-6}{4x} times \frac{3}{3}. Multiply \frac{2}{3x} times \frac{4}{4}.
\frac{3\left(x-6\right)-2\times 4}{12x}\leq 0
Since \frac{3\left(x-6\right)}{12x} and \frac{2\times 4}{12x} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-18-8}{12x}\leq 0
Do the multiplications in 3\left(x-6\right)-2\times 4.
\frac{3x-26}{12x}\leq 0
Combine like terms in 3x-18-8.
3x-26\geq 0 12x<0
For the quotient to be ≤0, one of the values 3x-26 and 12x has to be ≥0, the other has to be ≤0, and 12x cannot be zero. Consider the case when 3x-26\geq 0 and 12x is negative.
x\in \emptyset
This is false for any x.
3x-26\leq 0 12x>0
Consider the case when 3x-26\leq 0 and 12x is positive.
x\in (0,\frac{26}{3}]
The solution satisfying both inequalities is x\in \left(0,\frac{26}{3}\right].
x\in (0,\frac{26}{3}]
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}