Solve for x
x=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
1-2\left(x-2\right)=8-2\left(1-2x\right)+1
Multiply both sides of the equation by 4, the least common multiple of 4,2.
1-2x+4=8-2\left(1-2x\right)+1
Use the distributive property to multiply -2 by x-2.
5-2x=8-2\left(1-2x\right)+1
Add 1 and 4 to get 5.
5-2x=8-2+4x+1
Use the distributive property to multiply -2 by 1-2x.
5-2x=6+4x+1
Subtract 2 from 8 to get 6.
5-2x=7+4x
Add 6 and 1 to get 7.
5-2x-4x=7
Subtract 4x from both sides.
5-6x=7
Combine -2x and -4x to get -6x.
-6x=7-5
Subtract 5 from both sides.
-6x=2
Subtract 5 from 7 to get 2.
x=\frac{2}{-6}
Divide both sides by -6.
x=-\frac{1}{3}
Reduce the fraction \frac{2}{-6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}