Solve for x
x=6
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 4 } ( x - 3 ) - \frac { 3 } { 4 } ( x - 5 ) = 0
Share
Copied to clipboard
\frac{1}{4}x+\frac{1}{4}\left(-3\right)-\frac{3}{4}\left(x-5\right)=0
Use the distributive property to multiply \frac{1}{4} by x-3.
\frac{1}{4}x+\frac{-3}{4}-\frac{3}{4}\left(x-5\right)=0
Multiply \frac{1}{4} and -3 to get \frac{-3}{4}.
\frac{1}{4}x-\frac{3}{4}-\frac{3}{4}\left(x-5\right)=0
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{1}{4}x-\frac{3}{4}-\frac{3}{4}x-\frac{3}{4}\left(-5\right)=0
Use the distributive property to multiply -\frac{3}{4} by x-5.
\frac{1}{4}x-\frac{3}{4}-\frac{3}{4}x+\frac{-3\left(-5\right)}{4}=0
Express -\frac{3}{4}\left(-5\right) as a single fraction.
\frac{1}{4}x-\frac{3}{4}-\frac{3}{4}x+\frac{15}{4}=0
Multiply -3 and -5 to get 15.
-\frac{1}{2}x-\frac{3}{4}+\frac{15}{4}=0
Combine \frac{1}{4}x and -\frac{3}{4}x to get -\frac{1}{2}x.
-\frac{1}{2}x+\frac{-3+15}{4}=0
Since -\frac{3}{4} and \frac{15}{4} have the same denominator, add them by adding their numerators.
-\frac{1}{2}x+\frac{12}{4}=0
Add -3 and 15 to get 12.
-\frac{1}{2}x+3=0
Divide 12 by 4 to get 3.
-\frac{1}{2}x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x=-3\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
x=6
Multiply -3 and -2 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}