Evaluate
-\frac{31x^{2}}{2}-\frac{x}{4}+\frac{5}{2}
Expand
-\frac{31x^{2}}{2}-\frac{x}{4}+\frac{5}{2}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 1 } { 4 } ( x - 2 ) ( 2 x + 3 ) - 4 ( 2 x + 1 ) ( 2 x - 1 )
Share
Copied to clipboard
\left(\frac{1}{4}x+\frac{1}{4}\left(-2\right)\right)\left(2x+3\right)-4\left(2x+1\right)\left(2x-1\right)
Use the distributive property to multiply \frac{1}{4} by x-2.
\left(\frac{1}{4}x+\frac{-2}{4}\right)\left(2x+3\right)-4\left(2x+1\right)\left(2x-1\right)
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\left(\frac{1}{4}x-\frac{1}{2}\right)\left(2x+3\right)-4\left(2x+1\right)\left(2x-1\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{4}x\times 2x+\frac{1}{4}x\times 3-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Apply the distributive property by multiplying each term of \frac{1}{4}x-\frac{1}{2} by each term of 2x+3.
\frac{1}{4}x^{2}\times 2+\frac{1}{4}x\times 3-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Multiply x and x to get x^{2}.
\frac{2}{4}x^{2}+\frac{1}{4}x\times 3-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{2}x^{2}+\frac{1}{4}x\times 3-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x^{2}+\frac{3}{4}x-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
\frac{1}{2}x^{2}+\frac{3}{4}x-x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Cancel out 2 and 2.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Combine \frac{3}{4}x and -x to get -\frac{1}{4}x.
\frac{1}{2}x^{2}-\frac{1}{4}x+\frac{-3}{2}-4\left(2x+1\right)\left(2x-1\right)
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}-4\left(2x+1\right)\left(2x-1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}+\left(-8x-4\right)\left(2x-1\right)
Use the distributive property to multiply -4 by 2x+1.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}-16x^{2}+8x-8x+4
Apply the distributive property by multiplying each term of -8x-4 by each term of 2x-1.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}-16x^{2}+4
Combine 8x and -8x to get 0.
-\frac{31}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}+4
Combine \frac{1}{2}x^{2} and -16x^{2} to get -\frac{31}{2}x^{2}.
-\frac{31}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}+\frac{8}{2}
Convert 4 to fraction \frac{8}{2}.
-\frac{31}{2}x^{2}-\frac{1}{4}x+\frac{-3+8}{2}
Since -\frac{3}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
-\frac{31}{2}x^{2}-\frac{1}{4}x+\frac{5}{2}
Add -3 and 8 to get 5.
\left(\frac{1}{4}x+\frac{1}{4}\left(-2\right)\right)\left(2x+3\right)-4\left(2x+1\right)\left(2x-1\right)
Use the distributive property to multiply \frac{1}{4} by x-2.
\left(\frac{1}{4}x+\frac{-2}{4}\right)\left(2x+3\right)-4\left(2x+1\right)\left(2x-1\right)
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\left(\frac{1}{4}x-\frac{1}{2}\right)\left(2x+3\right)-4\left(2x+1\right)\left(2x-1\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{4}x\times 2x+\frac{1}{4}x\times 3-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Apply the distributive property by multiplying each term of \frac{1}{4}x-\frac{1}{2} by each term of 2x+3.
\frac{1}{4}x^{2}\times 2+\frac{1}{4}x\times 3-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Multiply x and x to get x^{2}.
\frac{2}{4}x^{2}+\frac{1}{4}x\times 3-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{2}x^{2}+\frac{1}{4}x\times 3-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x^{2}+\frac{3}{4}x-\frac{1}{2}\times 2x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
\frac{1}{2}x^{2}+\frac{3}{4}x-x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Cancel out 2 and 2.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{1}{2}\times 3-4\left(2x+1\right)\left(2x-1\right)
Combine \frac{3}{4}x and -x to get -\frac{1}{4}x.
\frac{1}{2}x^{2}-\frac{1}{4}x+\frac{-3}{2}-4\left(2x+1\right)\left(2x-1\right)
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}-4\left(2x+1\right)\left(2x-1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}+\left(-8x-4\right)\left(2x-1\right)
Use the distributive property to multiply -4 by 2x+1.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}-16x^{2}+8x-8x+4
Apply the distributive property by multiplying each term of -8x-4 by each term of 2x-1.
\frac{1}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}-16x^{2}+4
Combine 8x and -8x to get 0.
-\frac{31}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}+4
Combine \frac{1}{2}x^{2} and -16x^{2} to get -\frac{31}{2}x^{2}.
-\frac{31}{2}x^{2}-\frac{1}{4}x-\frac{3}{2}+\frac{8}{2}
Convert 4 to fraction \frac{8}{2}.
-\frac{31}{2}x^{2}-\frac{1}{4}x+\frac{-3+8}{2}
Since -\frac{3}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
-\frac{31}{2}x^{2}-\frac{1}{4}x+\frac{5}{2}
Add -3 and 8 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}