Solve for p
p=15
Share
Copied to clipboard
\frac{1}{4}p+\frac{1}{4}\left(-7\right)=\frac{1}{6}\left(p-3\right)
Use the distributive property to multiply \frac{1}{4} by p-7.
\frac{1}{4}p+\frac{-7}{4}=\frac{1}{6}\left(p-3\right)
Multiply \frac{1}{4} and -7 to get \frac{-7}{4}.
\frac{1}{4}p-\frac{7}{4}=\frac{1}{6}\left(p-3\right)
Fraction \frac{-7}{4} can be rewritten as -\frac{7}{4} by extracting the negative sign.
\frac{1}{4}p-\frac{7}{4}=\frac{1}{6}p+\frac{1}{6}\left(-3\right)
Use the distributive property to multiply \frac{1}{6} by p-3.
\frac{1}{4}p-\frac{7}{4}=\frac{1}{6}p+\frac{-3}{6}
Multiply \frac{1}{6} and -3 to get \frac{-3}{6}.
\frac{1}{4}p-\frac{7}{4}=\frac{1}{6}p-\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{4}p-\frac{7}{4}-\frac{1}{6}p=-\frac{1}{2}
Subtract \frac{1}{6}p from both sides.
\frac{1}{12}p-\frac{7}{4}=-\frac{1}{2}
Combine \frac{1}{4}p and -\frac{1}{6}p to get \frac{1}{12}p.
\frac{1}{12}p=-\frac{1}{2}+\frac{7}{4}
Add \frac{7}{4} to both sides.
\frac{1}{12}p=-\frac{2}{4}+\frac{7}{4}
Least common multiple of 2 and 4 is 4. Convert -\frac{1}{2} and \frac{7}{4} to fractions with denominator 4.
\frac{1}{12}p=\frac{-2+7}{4}
Since -\frac{2}{4} and \frac{7}{4} have the same denominator, add them by adding their numerators.
\frac{1}{12}p=\frac{5}{4}
Add -2 and 7 to get 5.
p=\frac{5}{4}\times 12
Multiply both sides by 12, the reciprocal of \frac{1}{12}.
p=\frac{5\times 12}{4}
Express \frac{5}{4}\times 12 as a single fraction.
p=\frac{60}{4}
Multiply 5 and 12 to get 60.
p=15
Divide 60 by 4 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}