Solve for a
a=15
Share
Copied to clipboard
\frac{1}{4}a+\frac{1}{4}\left(-3\right)=\frac{1}{3}\left(a-6\right)
Use the distributive property to multiply \frac{1}{4} by a-3.
\frac{1}{4}a+\frac{-3}{4}=\frac{1}{3}\left(a-6\right)
Multiply \frac{1}{4} and -3 to get \frac{-3}{4}.
\frac{1}{4}a-\frac{3}{4}=\frac{1}{3}\left(a-6\right)
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{1}{4}a-\frac{3}{4}=\frac{1}{3}a+\frac{1}{3}\left(-6\right)
Use the distributive property to multiply \frac{1}{3} by a-6.
\frac{1}{4}a-\frac{3}{4}=\frac{1}{3}a+\frac{-6}{3}
Multiply \frac{1}{3} and -6 to get \frac{-6}{3}.
\frac{1}{4}a-\frac{3}{4}=\frac{1}{3}a-2
Divide -6 by 3 to get -2.
\frac{1}{4}a-\frac{3}{4}-\frac{1}{3}a=-2
Subtract \frac{1}{3}a from both sides.
-\frac{1}{12}a-\frac{3}{4}=-2
Combine \frac{1}{4}a and -\frac{1}{3}a to get -\frac{1}{12}a.
-\frac{1}{12}a=-2+\frac{3}{4}
Add \frac{3}{4} to both sides.
-\frac{1}{12}a=-\frac{8}{4}+\frac{3}{4}
Convert -2 to fraction -\frac{8}{4}.
-\frac{1}{12}a=\frac{-8+3}{4}
Since -\frac{8}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
-\frac{1}{12}a=-\frac{5}{4}
Add -8 and 3 to get -5.
a=-\frac{5}{4}\left(-12\right)
Multiply both sides by -12, the reciprocal of -\frac{1}{12}.
a=\frac{-5\left(-12\right)}{4}
Express -\frac{5}{4}\left(-12\right) as a single fraction.
a=\frac{60}{4}
Multiply -5 and -12 to get 60.
a=15
Divide 60 by 4 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}