Solve for x
x = -\frac{9}{2} = -4\frac{1}{2} = -4.5
Graph
Share
Copied to clipboard
\frac{1}{4}\times 2x+\frac{1}{4}\left(-1\right)+3=\frac{1}{2}
Use the distributive property to multiply \frac{1}{4} by 2x-1.
\frac{2}{4}x+\frac{1}{4}\left(-1\right)+3=\frac{1}{2}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{2}x+\frac{1}{4}\left(-1\right)+3=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x-\frac{1}{4}+3=\frac{1}{2}
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{1}{2}x-\frac{1}{4}+\frac{12}{4}=\frac{1}{2}
Convert 3 to fraction \frac{12}{4}.
\frac{1}{2}x+\frac{-1+12}{4}=\frac{1}{2}
Since -\frac{1}{4} and \frac{12}{4} have the same denominator, add them by adding their numerators.
\frac{1}{2}x+\frac{11}{4}=\frac{1}{2}
Add -1 and 12 to get 11.
\frac{1}{2}x=\frac{1}{2}-\frac{11}{4}
Subtract \frac{11}{4} from both sides.
\frac{1}{2}x=\frac{2}{4}-\frac{11}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{11}{4} to fractions with denominator 4.
\frac{1}{2}x=\frac{2-11}{4}
Since \frac{2}{4} and \frac{11}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x=-\frac{9}{4}
Subtract 11 from 2 to get -9.
x=-\frac{9}{4}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=\frac{-9\times 2}{4}
Express -\frac{9}{4}\times 2 as a single fraction.
x=\frac{-18}{4}
Multiply -9 and 2 to get -18.
x=-\frac{9}{2}
Reduce the fraction \frac{-18}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}