Skip to main content
Solve for n (complex solution)
Tick mark Image
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}n+\frac{1}{4}\right)\left(n+4\right)-\frac{1}{4}n\left(2n+1\right)=2n+1
Use the distributive property to multiply \frac{1}{4} by 2n+1.
\frac{1}{2}n^{2}+\frac{9}{4}n+1-\frac{1}{4}n\left(2n+1\right)=2n+1
Use the distributive property to multiply \frac{1}{2}n+\frac{1}{4} by n+4 and combine like terms.
\frac{1}{2}n^{2}+\frac{9}{4}n+1-\frac{1}{4}n\left(2n+1\right)-2n=1
Subtract 2n from both sides.
\frac{1}{2}n^{2}+\frac{9}{4}n+1-\frac{1}{2}n^{2}-\frac{1}{4}n-2n=1
Use the distributive property to multiply -\frac{1}{4}n by 2n+1.
\frac{9}{4}n+1-\frac{1}{4}n-2n=1
Combine \frac{1}{2}n^{2} and -\frac{1}{2}n^{2} to get 0.
2n+1-2n=1
Combine \frac{9}{4}n and -\frac{1}{4}n to get 2n.
1=1
Combine 2n and -2n to get 0.
\text{true}
Compare 1 and 1.
n\in \mathrm{C}
This is true for any n.
\left(\frac{1}{2}n+\frac{1}{4}\right)\left(n+4\right)-\frac{1}{4}n\left(2n+1\right)=2n+1
Use the distributive property to multiply \frac{1}{4} by 2n+1.
\frac{1}{2}n^{2}+\frac{9}{4}n+1-\frac{1}{4}n\left(2n+1\right)=2n+1
Use the distributive property to multiply \frac{1}{2}n+\frac{1}{4} by n+4 and combine like terms.
\frac{1}{2}n^{2}+\frac{9}{4}n+1-\frac{1}{4}n\left(2n+1\right)-2n=1
Subtract 2n from both sides.
\frac{1}{2}n^{2}+\frac{9}{4}n+1-\frac{1}{2}n^{2}-\frac{1}{4}n-2n=1
Use the distributive property to multiply -\frac{1}{4}n by 2n+1.
\frac{9}{4}n+1-\frac{1}{4}n-2n=1
Combine \frac{1}{2}n^{2} and -\frac{1}{2}n^{2} to get 0.
2n+1-2n=1
Combine \frac{9}{4}n and -\frac{1}{4}n to get 2n.
1=1
Combine 2n and -2n to get 0.
\text{true}
Compare 1 and 1.
n\in \mathrm{R}
This is true for any n.