Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{314}{4}\times 48^{2}x
Multiply \frac{1}{4} and 314 to get \frac{314}{4}.
\frac{157}{2}\times 48^{2}x
Reduce the fraction \frac{314}{4} to lowest terms by extracting and canceling out 2.
\frac{157}{2}\times 2304x
Calculate 48 to the power of 2 and get 2304.
\frac{157\times 2304}{2}x
Express \frac{157}{2}\times 2304 as a single fraction.
\frac{361728}{2}x
Multiply 157 and 2304 to get 361728.
180864x
Divide 361728 by 2 to get 180864.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{314}{4}\times 48^{2}x)
Multiply \frac{1}{4} and 314 to get \frac{314}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157}{2}\times 48^{2}x)
Reduce the fraction \frac{314}{4} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157}{2}\times 2304x)
Calculate 48 to the power of 2 and get 2304.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157\times 2304}{2}x)
Express \frac{157}{2}\times 2304 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{361728}{2}x)
Multiply 157 and 2304 to get 361728.
\frac{\mathrm{d}}{\mathrm{d}x}(180864x)
Divide 361728 by 2 to get 180864.
180864x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
180864x^{0}
Subtract 1 from 1.
180864\times 1
For any term t except 0, t^{0}=1.
180864
For any term t, t\times 1=t and 1t=t.