Evaluate
\frac{45216x}{25}
Differentiate w.r.t. x
1808.64
Graph
Share
Copied to clipboard
\frac{1}{4}\times \frac{157}{50}\times 48^{2}x
Convert decimal number 3.14 to fraction \frac{314}{100}. Reduce the fraction \frac{314}{100} to lowest terms by extracting and canceling out 2.
\frac{1\times 157}{4\times 50}\times 48^{2}x
Multiply \frac{1}{4} times \frac{157}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{157}{200}\times 48^{2}x
Do the multiplications in the fraction \frac{1\times 157}{4\times 50}.
\frac{157}{200}\times 2304x
Calculate 48 to the power of 2 and get 2304.
\frac{157\times 2304}{200}x
Express \frac{157}{200}\times 2304 as a single fraction.
\frac{361728}{200}x
Multiply 157 and 2304 to get 361728.
\frac{45216}{25}x
Reduce the fraction \frac{361728}{200} to lowest terms by extracting and canceling out 8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4}\times \frac{157}{50}\times 48^{2}x)
Convert decimal number 3.14 to fraction \frac{314}{100}. Reduce the fraction \frac{314}{100} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1\times 157}{4\times 50}\times 48^{2}x)
Multiply \frac{1}{4} times \frac{157}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157}{200}\times 48^{2}x)
Do the multiplications in the fraction \frac{1\times 157}{4\times 50}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157}{200}\times 2304x)
Calculate 48 to the power of 2 and get 2304.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157\times 2304}{200}x)
Express \frac{157}{200}\times 2304 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{361728}{200}x)
Multiply 157 and 2304 to get 361728.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{45216}{25}x)
Reduce the fraction \frac{361728}{200} to lowest terms by extracting and canceling out 8.
\frac{45216}{25}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{45216}{25}x^{0}
Subtract 1 from 1.
\frac{45216}{25}\times 1
For any term t except 0, t^{0}=1.
\frac{45216}{25}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}