Evaluate
7.06
Factor
\frac{353}{2 \cdot 5 ^ {2}} = 7\frac{3}{50} = 7.06
Share
Copied to clipboard
\frac{1}{4}\left(\frac{4.85\times 10}{5}-3.6+6.15\times \frac{3\times 5+3}{5}\right)
Divide 4.85 by \frac{5}{10} by multiplying 4.85 by the reciprocal of \frac{5}{10}.
\frac{1}{4}\left(\frac{48.5}{5}-3.6+6.15\times \frac{3\times 5+3}{5}\right)
Multiply 4.85 and 10 to get 48.5.
\frac{1}{4}\left(\frac{485}{50}-3.6+6.15\times \frac{3\times 5+3}{5}\right)
Expand \frac{48.5}{5} by multiplying both numerator and the denominator by 10.
\frac{1}{4}\left(\frac{97}{10}-3.6+6.15\times \frac{3\times 5+3}{5}\right)
Reduce the fraction \frac{485}{50} to lowest terms by extracting and canceling out 5.
\frac{1}{4}\left(\frac{97}{10}-\frac{18}{5}+6.15\times \frac{3\times 5+3}{5}\right)
Convert decimal number 3.6 to fraction \frac{36}{10}. Reduce the fraction \frac{36}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{4}\left(\frac{97}{10}-\frac{36}{10}+6.15\times \frac{3\times 5+3}{5}\right)
Least common multiple of 10 and 5 is 10. Convert \frac{97}{10} and \frac{18}{5} to fractions with denominator 10.
\frac{1}{4}\left(\frac{97-36}{10}+6.15\times \frac{3\times 5+3}{5}\right)
Since \frac{97}{10} and \frac{36}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}\left(\frac{61}{10}+6.15\times \frac{3\times 5+3}{5}\right)
Subtract 36 from 97 to get 61.
\frac{1}{4}\left(\frac{61}{10}+6.15\times \frac{15+3}{5}\right)
Multiply 3 and 5 to get 15.
\frac{1}{4}\left(\frac{61}{10}+6.15\times \frac{18}{5}\right)
Add 15 and 3 to get 18.
\frac{1}{4}\left(\frac{61}{10}+\frac{123}{20}\times \frac{18}{5}\right)
Convert decimal number 6.15 to fraction \frac{615}{100}. Reduce the fraction \frac{615}{100} to lowest terms by extracting and canceling out 5.
\frac{1}{4}\left(\frac{61}{10}+\frac{123\times 18}{20\times 5}\right)
Multiply \frac{123}{20} times \frac{18}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}\left(\frac{61}{10}+\frac{2214}{100}\right)
Do the multiplications in the fraction \frac{123\times 18}{20\times 5}.
\frac{1}{4}\left(\frac{61}{10}+\frac{1107}{50}\right)
Reduce the fraction \frac{2214}{100} to lowest terms by extracting and canceling out 2.
\frac{1}{4}\left(\frac{305}{50}+\frac{1107}{50}\right)
Least common multiple of 10 and 50 is 50. Convert \frac{61}{10} and \frac{1107}{50} to fractions with denominator 50.
\frac{1}{4}\times \frac{305+1107}{50}
Since \frac{305}{50} and \frac{1107}{50} have the same denominator, add them by adding their numerators.
\frac{1}{4}\times \frac{1412}{50}
Add 305 and 1107 to get 1412.
\frac{1}{4}\times \frac{706}{25}
Reduce the fraction \frac{1412}{50} to lowest terms by extracting and canceling out 2.
\frac{1\times 706}{4\times 25}
Multiply \frac{1}{4} times \frac{706}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{706}{100}
Do the multiplications in the fraction \frac{1\times 706}{4\times 25}.
\frac{353}{50}
Reduce the fraction \frac{706}{100} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}