Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}\times 4\sqrt{5}-\left(5\sqrt{\frac{1}{18}}+\sqrt{\frac{45}{4}}\right)
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\sqrt{5}-\left(5\sqrt{\frac{1}{18}}+\sqrt{\frac{45}{4}}\right)
Cancel out 4 and 4.
\sqrt{5}-\left(5\times \frac{\sqrt{1}}{\sqrt{18}}+\sqrt{\frac{45}{4}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{18}} as the division of square roots \frac{\sqrt{1}}{\sqrt{18}}.
\sqrt{5}-\left(5\times \frac{1}{\sqrt{18}}+\sqrt{\frac{45}{4}}\right)
Calculate the square root of 1 and get 1.
\sqrt{5}-\left(5\times \frac{1}{3\sqrt{2}}+\sqrt{\frac{45}{4}}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\sqrt{5}-\left(5\times \frac{\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}+\sqrt{\frac{45}{4}}\right)
Rationalize the denominator of \frac{1}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{5}-\left(5\times \frac{\sqrt{2}}{3\times 2}+\sqrt{\frac{45}{4}}\right)
The square of \sqrt{2} is 2.
\sqrt{5}-\left(5\times \frac{\sqrt{2}}{6}+\sqrt{\frac{45}{4}}\right)
Multiply 3 and 2 to get 6.
\sqrt{5}-\left(\frac{5\sqrt{2}}{6}+\sqrt{\frac{45}{4}}\right)
Express 5\times \frac{\sqrt{2}}{6} as a single fraction.
\sqrt{5}-\left(\frac{5\sqrt{2}}{6}+\frac{\sqrt{45}}{\sqrt{4}}\right)
Rewrite the square root of the division \sqrt{\frac{45}{4}} as the division of square roots \frac{\sqrt{45}}{\sqrt{4}}.
\sqrt{5}-\left(\frac{5\sqrt{2}}{6}+\frac{3\sqrt{5}}{\sqrt{4}}\right)
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\sqrt{5}-\left(\frac{5\sqrt{2}}{6}+\frac{3\sqrt{5}}{2}\right)
Calculate the square root of 4 and get 2.
\sqrt{5}-\left(\frac{5\sqrt{2}}{6}+\frac{3\times 3\sqrt{5}}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 2 is 6. Multiply \frac{3\sqrt{5}}{2} times \frac{3}{3}.
\sqrt{5}-\frac{5\sqrt{2}+3\times 3\sqrt{5}}{6}
Since \frac{5\sqrt{2}}{6} and \frac{3\times 3\sqrt{5}}{6} have the same denominator, add them by adding their numerators.
\sqrt{5}-\frac{5\sqrt{2}+9\sqrt{5}}{6}
Do the multiplications in 5\sqrt{2}+3\times 3\sqrt{5}.
\frac{6\sqrt{5}}{6}-\frac{5\sqrt{2}+9\sqrt{5}}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{5} times \frac{6}{6}.
\frac{6\sqrt{5}-\left(5\sqrt{2}+9\sqrt{5}\right)}{6}
Since \frac{6\sqrt{5}}{6} and \frac{5\sqrt{2}+9\sqrt{5}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{5}-5\sqrt{2}-9\sqrt{5}}{6}
Do the multiplications in 6\sqrt{5}-\left(5\sqrt{2}+9\sqrt{5}\right).
\frac{-3\sqrt{5}-5\sqrt{2}}{6}
Do the calculations in 6\sqrt{5}-5\sqrt{2}-9\sqrt{5}.