Evaluate
\frac{\sqrt{5}}{3}-\frac{3\sqrt{7}}{16}\approx 0.249277622
Factor
\frac{16 \sqrt{5} - 9 \sqrt{7}}{48} = 0.2492776216753192
Share
Copied to clipboard
\frac{1}{4}\times 4\sqrt{5}-\frac{1}{16}\sqrt{63}-\frac{1}{9}\sqrt{180}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\sqrt{5}-\frac{1}{16}\sqrt{63}-\frac{1}{9}\sqrt{180}
Cancel out 4 and 4.
\sqrt{5}-\frac{1}{16}\times 3\sqrt{7}-\frac{1}{9}\sqrt{180}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
\sqrt{5}+\frac{-3}{16}\sqrt{7}-\frac{1}{9}\sqrt{180}
Express -\frac{1}{16}\times 3 as a single fraction.
\sqrt{5}-\frac{3}{16}\sqrt{7}-\frac{1}{9}\sqrt{180}
Fraction \frac{-3}{16} can be rewritten as -\frac{3}{16} by extracting the negative sign.
\sqrt{5}-\frac{3}{16}\sqrt{7}-\frac{1}{9}\times 6\sqrt{5}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
\sqrt{5}-\frac{3}{16}\sqrt{7}+\frac{-6}{9}\sqrt{5}
Express -\frac{1}{9}\times 6 as a single fraction.
\sqrt{5}-\frac{3}{16}\sqrt{7}-\frac{2}{3}\sqrt{5}
Reduce the fraction \frac{-6}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{3}\sqrt{5}-\frac{3}{16}\sqrt{7}
Combine \sqrt{5} and -\frac{2}{3}\sqrt{5} to get \frac{1}{3}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}