Evaluate
-\frac{4}{5}=-0.8
Factor
-\frac{4}{5} = -0.8
Quiz
Arithmetic
\frac { 1 } { 4 } \sqrt { 8 } \div ( 2 \frac { 1 } { 2 } ) \times ( - 2 \sqrt { 2 } )
Share
Copied to clipboard
\frac{\frac{1}{4}\times 2\sqrt{2}}{\frac{2\times 2+1}{2}}\left(-2\right)\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{2}{4}\sqrt{2}}{\frac{2\times 2+1}{2}}\left(-2\right)\sqrt{2}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{\frac{1}{2}\sqrt{2}}{\frac{2\times 2+1}{2}}\left(-2\right)\sqrt{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{2}\sqrt{2}}{\frac{4+1}{2}}\left(-2\right)\sqrt{2}
Multiply 2 and 2 to get 4.
\frac{\frac{1}{2}\sqrt{2}}{\frac{5}{2}}\left(-2\right)\sqrt{2}
Add 4 and 1 to get 5.
\frac{\frac{1}{2}\sqrt{2}\times 2}{5}\left(-2\right)\sqrt{2}
Divide \frac{1}{2}\sqrt{2} by \frac{5}{2} by multiplying \frac{1}{2}\sqrt{2} by the reciprocal of \frac{5}{2}.
\frac{\sqrt{2}}{5}\left(-2\right)\sqrt{2}
Cancel out 2 and 2.
\frac{-\sqrt{2}\times 2}{5}\sqrt{2}
Express \frac{\sqrt{2}}{5}\left(-2\right) as a single fraction.
\frac{-\sqrt{2}\times 2\sqrt{2}}{5}
Express \frac{-\sqrt{2}\times 2}{5}\sqrt{2} as a single fraction.
\frac{-2\times 2}{5}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-4}{5}
Multiply -2 and 2 to get -4.
-\frac{4}{5}
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}